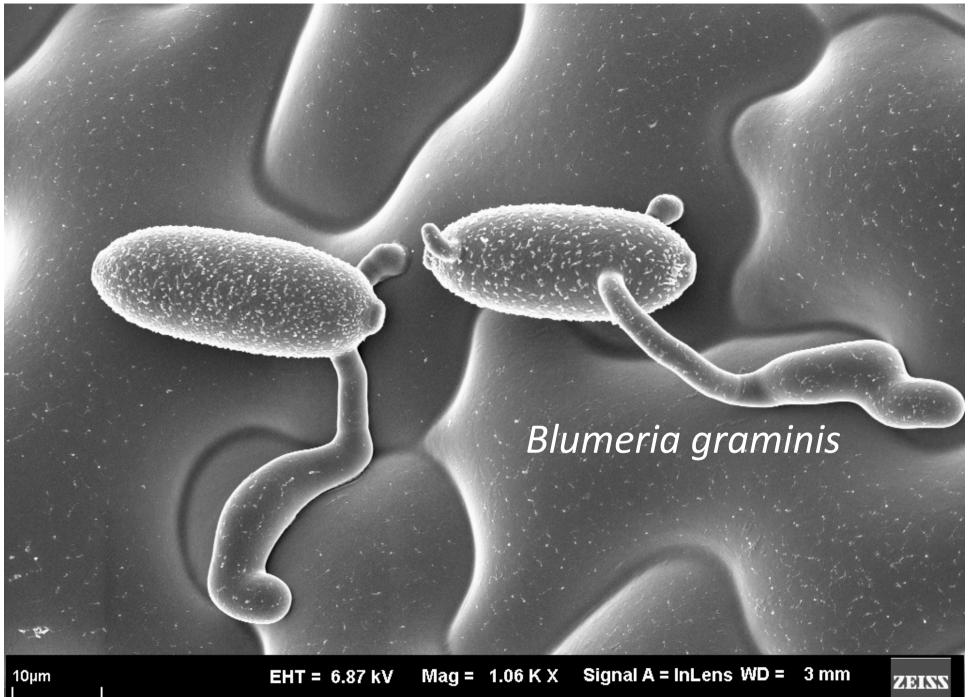
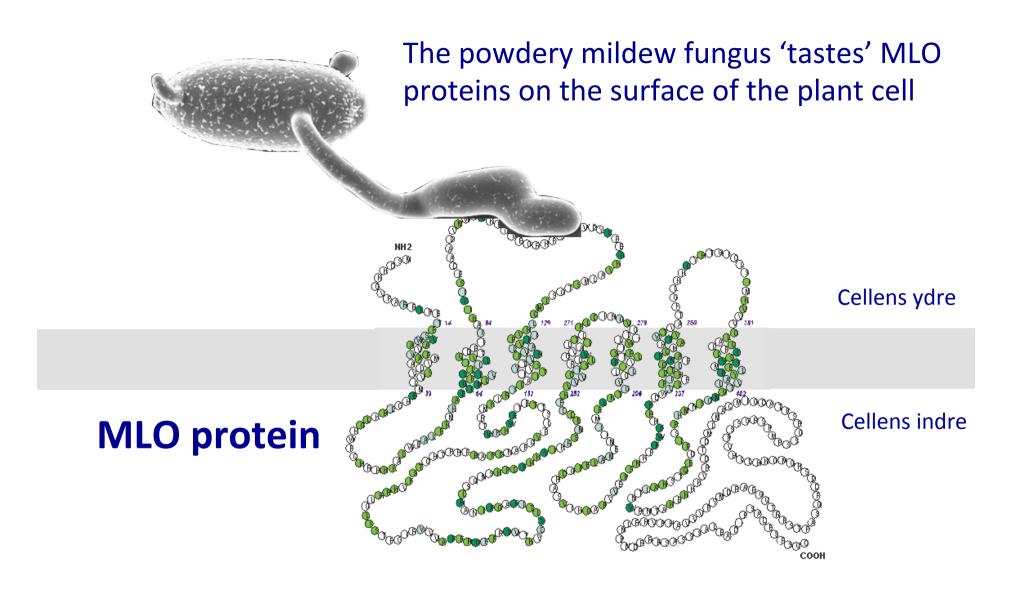


What is organic agriculture?



"There are many explanations and definitions for organic agriculture but all converge to state that it is a system that relies on ecosystem management rather than external agricultural inputs."

FAO position paper on Organic Agriculture, 1999


An example how loss of function by the use of new breeding techniques have led to a crop that is less dependent on external inputs

Chamber Status = Pumping (HV)

Chamber = 1.19e-002 Pa

Wheat has three *MLO* genes, each coding for a MLO protein that the fungus can recognize

In conventional agriculture powdery mildew is controlled by fungicides

Fungicide

For control of diseases caused by Downy Mildew and Phytopthora in greenhouse and outdoor ornamentals, and listed vegetables grown for transplant and retail sale to consumers

1 quart

Active Ingredient:

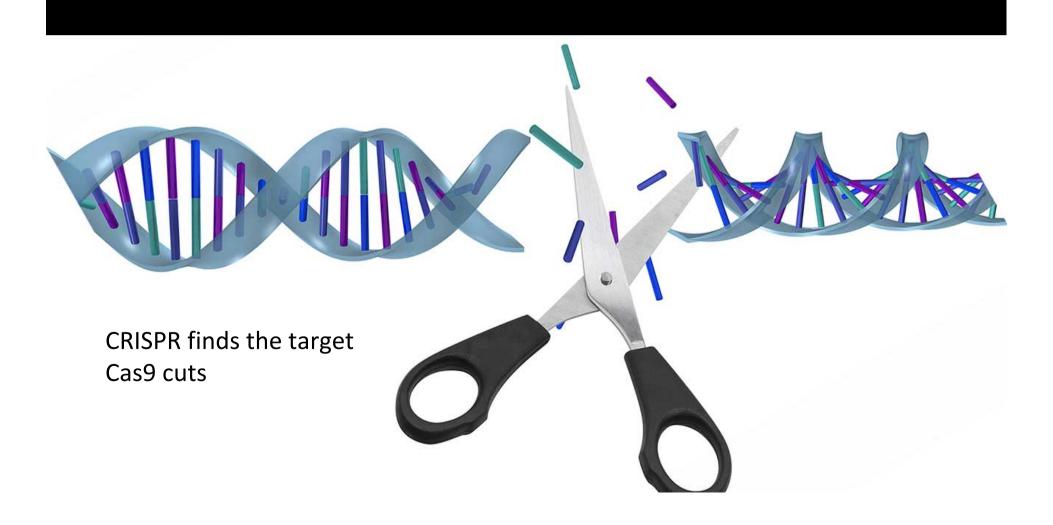
Mandipropamid*	23.3%
Other Ingredients:	76.7%
Total:	100.0%

PULL HERE >

*CAS No. 374726-62-2

Contains 1,2-benzisothiazolin-3-one at 0.017% as a preservative Contains 23.3% Mandipropamid equivalent to 2.08 pounds per gallon or 250 grams per liter of active ingredient

KEEP OUT OF REACH OF CHILDREN.


See additional precautionary statements and directions for use inside booklet.

EPA Reg. 100-1388 EPA Est. 100-NE-001

Product of Switzerland Formulated in USA

SCP 1388A-L1 1111 357008

CRISPR/Cas9 is a powerful method for generation of targeted loss-of-function mutations

2014: Wheat had its MLO genes cut

Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew

Yanpeng Wang^{1,3}, Xi Cheng^{2,3}, Qiwei Shan¹, Yi Zhang¹, Jinxing Liu¹, Caixia Gao¹ & Jin-Long Qiu²

Sequence-specific nucleases have been applied to engineer targeted modifications in polyploid genomes¹, but simultaneous modification of multiple homoeoalleles has not been reported. Here we use transcription activator-like effector nuclease (TALEN)^{2,3} and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 (refs. 4,5) technologies in hexaploid bread wheat to introduce targeted mutations in the three homoeoalleles that encode MILDEW-RESISTANCE LOCUS (MLO) proteins⁶. Genetic redundancy has prevented evaluation of whether mutation of all three MLO alleles in bread wheat might confer resistance to powdery mildew, a trait not found in natural populations⁷. We show that TALEN-induced mutation of all three TaMLO homoeologs in the same plant confers heritable broad-spectrum resistance to powdery mildew. We further use CRISPR-Cas9 technology to generate transgenic wheat plants that carry mutations in the TaMLO-A1 allele. We also demonstrate the feasibility of engineering targeted DNA insertion in bread wheat through nonhomologous end joining of the double-strand breaks caused by TALENs. Our findings provide a methodological framework to improve polyploid crops.

breaks, which are then repaired mainly by either error-prone non-homologous end joining (NHEJ) or high-fidelity homologous recombination¹¹. All three types of SSN have been used to create targeted gene knockouts in various plant species¹². Although heritable gene modification has been demonstrated in *Arabidopsis*^{13–15} and rice¹⁶ using the SSNs, germline transmission of a mutation created by such genome editing strategies has not yet been achieved in hexaploid bread wheat. We have previously demonstrated genome editing in bread wheat using a transient protoplast expression system¹⁷. Here we report the use of TALENs and the CRISPR-Cas9 system to modify an endogenous wheat gene and produce newly introduced, stably transmitted genetic traits. Our findings underscore the potential of SSNs as efficient tools for wheat research and breeding.

We chose to target three *MLO* loci, which encode proteins that were shown to repress defenses against powdery mildew diseases in other plants¹⁸. Loss-of-function *mlo* alleles in barley¹⁹, *Arabidopsis*²⁰ and tomato²¹ lead to broad-spectrum and durable resistance to the fungal pathogens that cause powdery mildew in these species. In wheat, powdery mildew is caused by *Blumeria graminis* f. sp. *tritici* (*Bgt*), which is one of the most destructive plant pathogens worldwide. Modification of *MLO* genes in wheat may provide the opportunity to breed varieties

Mutations in an *MLO* gene from wheat resulting from cuts by CRISPR/Cas9

MLO-A1: TCGCTGCTCGCCGTCACGCAGGACCCAATCTCCGGATATGCATCTCCCA

M3: TCGCTGCTGCTCGCCGTCA...AGGACCCAATCTCCGGATATGCATCTCCCA

M6: TCGCTGCTGCTCGCCGTCA.GCAGGACCCAATCTCCGGATATGCATCTCCCA

M11: TCGCTGCTGCTCGCCGTCA....GGACCCAATCTCCGGATATGCATCTCCCA

M13: TCGCTGCTGCTCGCCGTCATCGCAGGACCCAATCTCCGGATATGCATCTCCCA +1

Wheat with three MLO genes cut – A, B og D – is resistant towards mildew and need not be sprayed

What to do?

University of Copenhagen KU2016 Crossdisciplinary Program

How can we use today's enormous knowledge on plants for the benefit of mankind in a societally acceptable way?

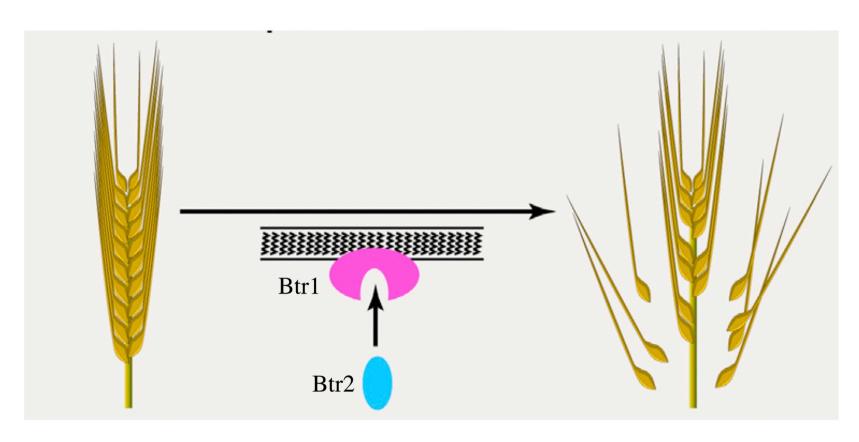
"Plants for a changing world"

Biotechnology and plants

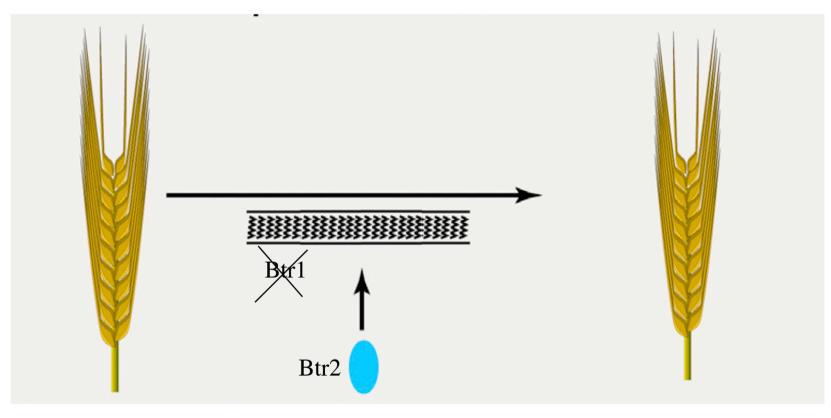
All agriculture and human nutrition are based on mutants!

Some examples of 'traditional' mutant plants

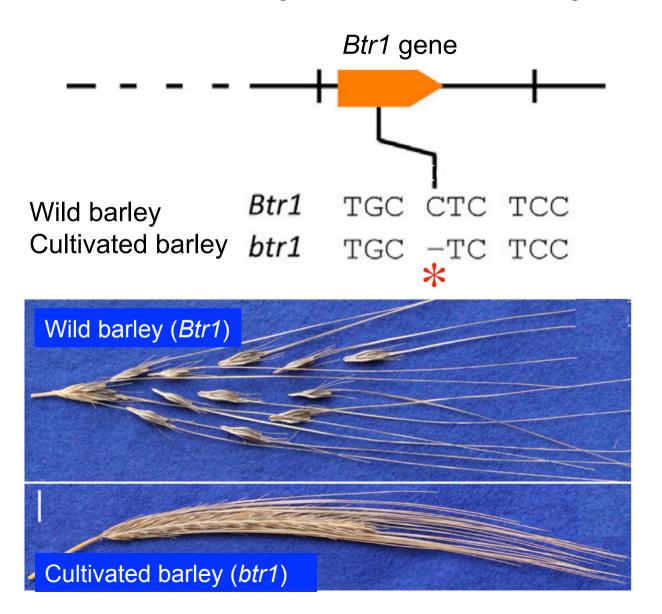
The origin of agriculture


Agriculture is only about 10.000 years old

Wheat harvest in Egypt ≈ 1.300 B.C.


Mural painting; Tomb of Sennedjem, Ancient Thebes.

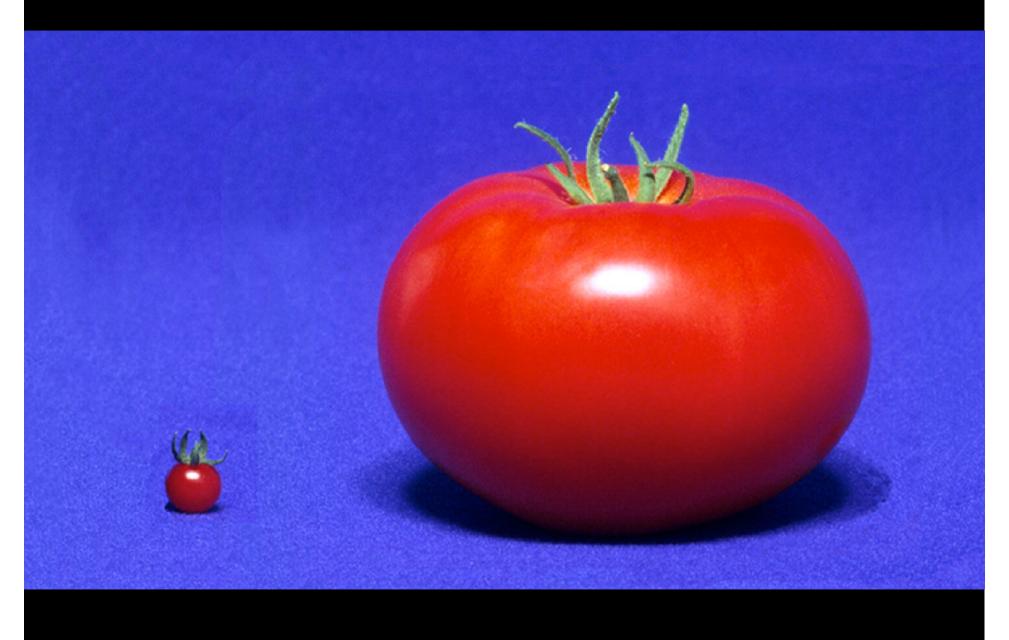
In the wild relative to barley does the spike splinter when mature to facilitate dispersal of the seeds

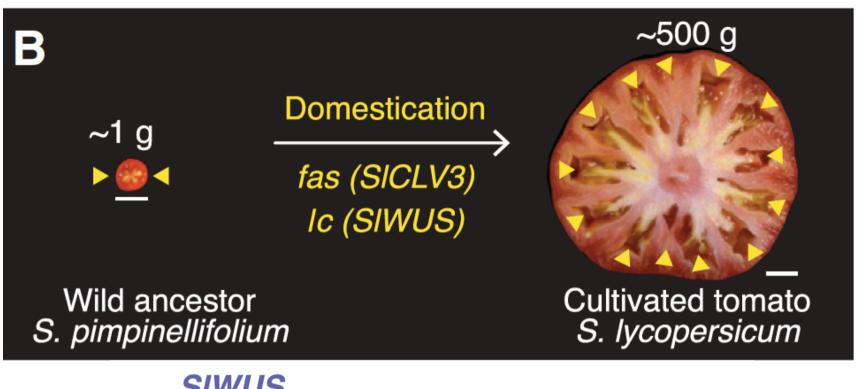

Wild barley (Hordeum vulgare subsp. spontaneum)

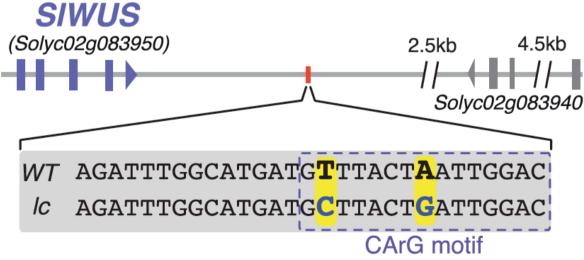
A mutation in the gene that codes for Btr1 protein lead to a defect in this process

Cultivated barley (Hordeum vulgare)

In the cultivated barley the *Btr1* gene is defect due to the deletion of a single DNA base in the gene

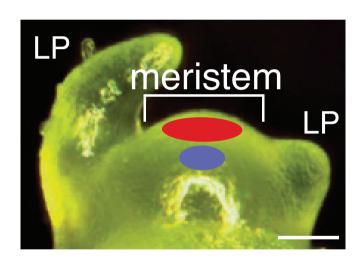

Pourkheirandish et al., 2015, Cell 162, 527–539


The defect in the cultivated barley can be 'repaired' by insertion of the non-mutated *Btr1* gene from wild barley



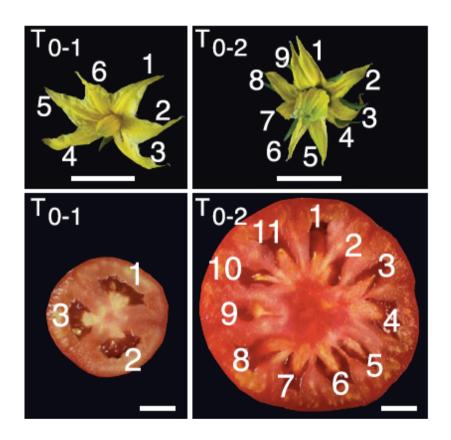
Pourkheirandish *et al.*, 2015, Cell 162, 527-

TRAITS GAINED BY BREEDING



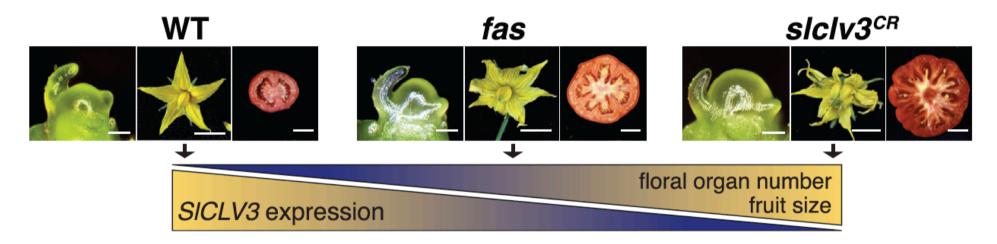
Rodríguez-Leal et al. (2017) Cell 171: 470-480.

Tomato fruit size is controlled by two genes



WUSCHEL (WUS)
Stem cell promoting transcription factor

CLAVATA3 (CLV3)
Differentiation promoting peptide


Two different mutants of wild tomato made by CRISPR/Cas9

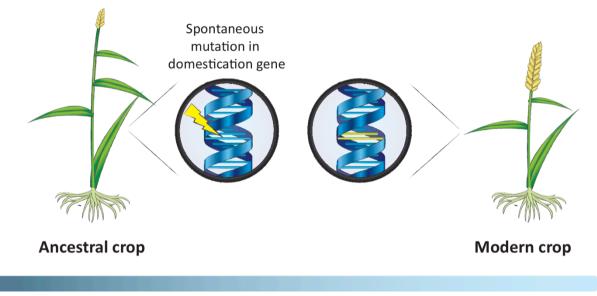
CRISPR/Cas9 cutting in *SI*CLV3 promoter region mimics mutations that lead to domestication of tomato

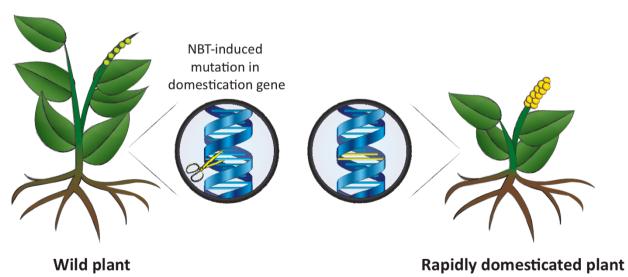
Rodríguez-Leal *et al.* (2017) Engineering quantitative trait variation for crop improvement by genome editing. *Cell* 171: 470-480.

SICLV3 functions as a brake that inhibits SIWUS, which stimulates stem cell division

More SICLV3 protein:

Small fruits Few locules **Less SICLV3 protein:**


Large fruits
More locules


Rodríguez-Leal *et al.* (2017) *Cell* 171: 470-480.

 Many traits in crops that were crucial for their domestication are caused by mutations that can be produced by mutation techniques.

 This opens a path for accelerated domestication of wild plants

Accelerating the Domestication of New Crops

Trends in Plant Science, May 2017, Vol. 22, No. 5

nature biotechnology

Zsögön *et al.* (2018) Nature Biotechnology Oct 1. doi: 10.1038/nbt.4272

De novo domestication of wild tomato using genome editing

Agustin Zsögön^{1,7}, Tomáš Čermák^{2,6,7}, Emmanuel Rezende Naves¹, Marcela Morato Notini³, Kai H Edel⁴, Stefan Weinl⁴, Luciano Freschi⁵, Daniel F Voytas², Jörg Kudla⁴ & Lázaro Eustáquio Pereira Peres³

Breeding of crops over millennia for yield and productivity 1 has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost². We devised a CRISPR-Cas9 genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in presentday tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum. Our results pave the way for molecular breeding programs to exploit the genetic diversity present in wild plants.

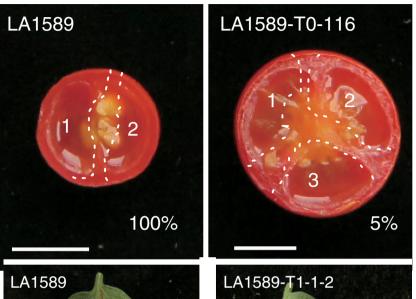
We previously identified a suite of loci that have shaped the morphology and agronomic potential of current cultivars of tomato, maize, rice and other crops and proposed a reverse genetic approach for the de novo domestication of novel crops⁹ (Table 1 and Supplementary **Table 1**). In tomato, at least six loci important for key domestication traits have been identified: general plant growth habit (SELF-PRUNING)10, fruit shape (OVATE)11 and size (FASCIATED and FRUIT WEIGHT 2.2)12,13, fruit number (MULTIFLORA)14, and nutritional quality (LYCOPENE BETA CYCLASE)15. We set out to create a novel crop derived from *S. pimpinellifolium* by targeting this set of genes using a multiplex CRISPR-Cas9 approach to generate loss-of-function alleles. We constructed a single CRISPR-Cas9 plant transformation vector, pTC321 (Supplementary Note 1), which harbored six single guide RNAs (gRNAs) targeting specific sequences in the coding regions of all six genes (Supplementary Fig. 1). Using this vector, we generated ten primary T_0 lines, of which three were grown to maturity. T₁ seeds were harvested from plant 3, which showed an

BRIEF COMMUNICATIONS

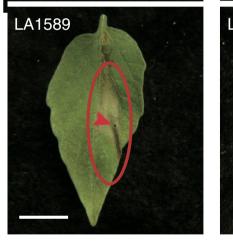
Li et al. (2018) Nature Biotechnology Oct 1. doi: 10.1038/nbt.4273

Domestication of wild tomato is accelerated by genome editing

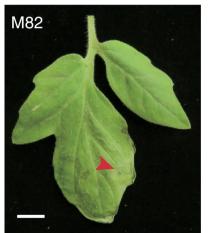
Tingdong Li^{1,2,5}, Xinping Yang³⁻⁵, Yuan Yu²⁻⁵, Xiaomin Si^{1,2}, Xiawan Zhai^{3,4}, Huawei Zhang¹, Wenxia Dong^{3,4}, Caixia Gao^{1,2} & Cao Xu²⁻⁴


Crop improvement by inbreeding often results in fitness penalties and loss of genetic diversity. We introduced desirable traits into four stress-tolerant wild-tomato accessions by using multiplex CRISPR—Cas9 editing of coding sequences, *cis*-regulatory regions or upstream open reading frames of genes associated with morphology, flower and fruit production, and ascorbic acid synthesis. Cas9-free progeny of edited plants had domesticated phenotypes yet retained parental disease resistance and salt tolerance.

Conventional breeding to domesticate wild plants increases productivity but is often accompanied by decreased fitness and genetic diversity, thus hampering growth in challenging environmental conditions¹. Introgression of stress-tolerance genes from wild relatives


Loss of the flowering repressor SELF-PRUNING 5G (SP5G, a member of the CETS protein family) in tomato confers day neutrality and thus could potentially extend the geographical cultivation range 12. Mutations in the SP (SELF PRUNING) gene, another CETS family flowering repressor, change tomato indeterminate shoot architecture into determinate vines. This change enables high-density growth and mechanical harvesting, because sp variants are compact plants with intense inflorescence and almost synchronous fruit ripening^{12,13}. Moreover, simultaneous mutation of SP5G and SP in tomato varieties can produce 'double determinate' plants that flower early on both primary and sympodial shoots, and permit early harvest¹². Precise editing of SP and SP5G in wild tomato species might serve as a first step toward generating commercially cultivable lines. To that end, we designed one guide RNA (gRNA) for the first exon of each gene to induce mutations in SP and SP5G through genome editing (Supplementary Fig. 1a,b).

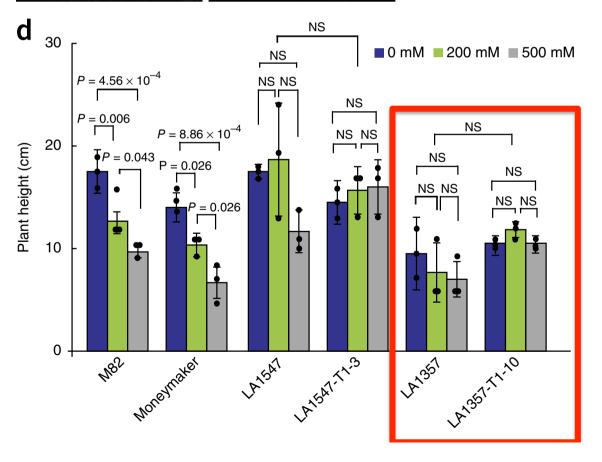

Fruit-size enlargement due to increased numbers of seed compartments (locules) is a crucial feature of domesticated tomato¹⁴, but *S. pimpinellifolium* has only tiny bilocular fruits. Two quantitative trait loci, *fasciated* (*fas*)¹⁵ and *locule number* (*lc*)¹⁶, are responsible for increasing locule number and fruit size, and are correlated with mutations in the small-peptide-encoding gene *CLV3* (*CLAVATA3*) and the homeobox-encoding gene *WUS* (*WUSCHEL*), respectively. *CLV3* null mutations in tomato and *WUS* loss-of-function


a



Accelererated domestication of a *Xanthomonas*-resistant line of wild tomato

Xanthomonas-resistance is maintained after domestication


Li *et al.* (2018) *Nat. Biotechnol.* Oct 1. doi: 10.1038/nbt.4273

LA1357 LA1357-T1-10-31

100%

Li *et al.* (2018) *Nat. Biotechnol.* Oct 1. doi: 10.1038/nbt.4273

Accelerated domestication of a salt-resistant line of wild tomato

8.6%

Salt-resistance is maintained after domestication

REVIEW

PLANT SCIENCE

Revolutions in agriculture chart a course for targeted breeding of old and new crops

Yuval Eshed¹* and Zachary B. Lippman^{2,3}*

The dominance of the major crops that feed humans and their livestock arose from agricultural revolutions that increased productivity and adapted plants to large-scale farming practices. Two hormone systems that universally control flowering and plant architecture, florigen and gibberellin, were the source of multiple revolutions that modified reproductive transitions and proportional growth among plant parts. Although step changes based on serendipitous mutations in these hormone systems laid the foundation, genetic and agronomic tuning were required for broad agricultural benefits. We propose that generating targeted genetic variation in core components of both systems would elicit a wider range of phenotypic variation. Incorporating this enhanced diversity into breeding programs of conventional and underutilized crops could help to meet the future needs of the human diet and promote sustainable agriculture.

tem that directs toward flowerin relationship is or navigate betwee production of sulleaves (source timetabolic dema fruits, and seeds completion of globefore growing

Although this florigen-antiflorig the dynamic ever family and species plays between it generalization of chitecture and reproductive and reproductive and reproductive and reproductive

- Out of the more than 350.000 plant species that exist, less than 200 are commercially important and three species, rice, wheat and maize, account for the major part of plant derived nutrients humans consume.
- Traits of importance for a sustainable and carbon neutral agriculture already exist in wild plants.
- Transform agriculture by learning from nature.

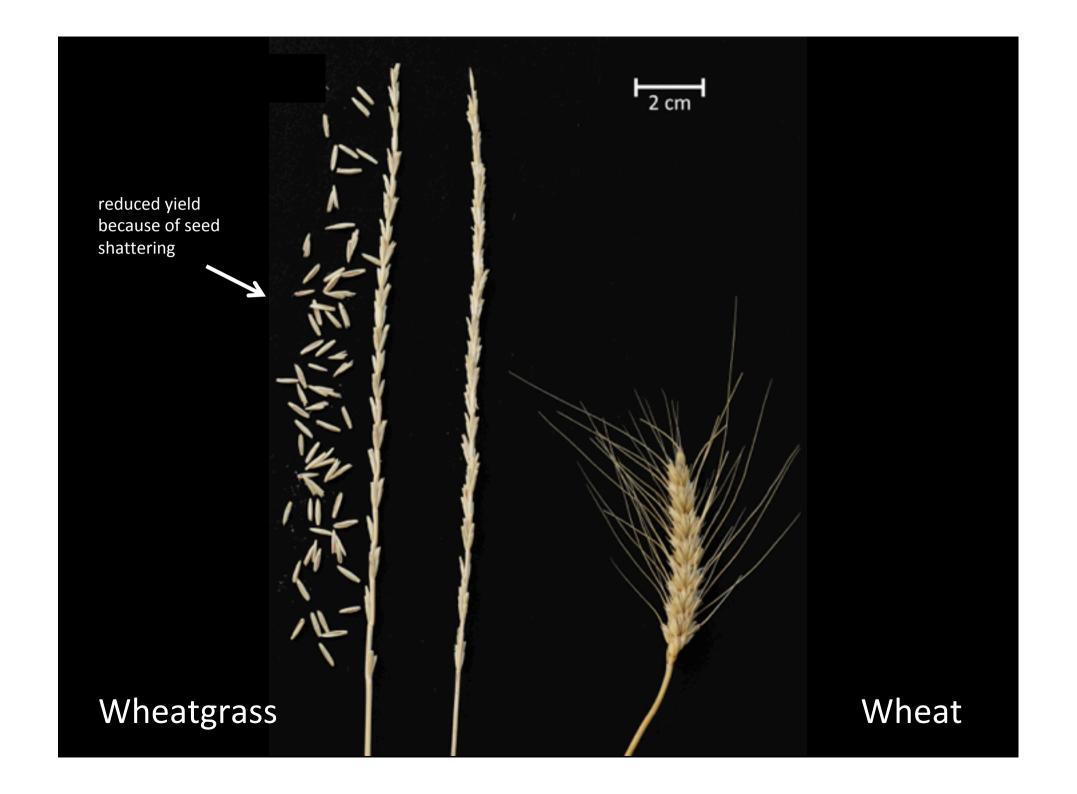
All current crops are developed for conventional agriculture

New breeding techniques allow for accelerated domestication of new crops for organic agriculture

Plants that

- require less input (water, nutrients, chemicals)
- are more resilient (drought, salt stress, pests)
- grow in soil-preserving perennial polycultures
- give more output than wild plants
- store carbon

Intermediate wheatgrass Thinopyrum intermedium


perennial

a potential sustainable grain crop but still not domesticated

Perennial
grasses need not
be sown every
year and store
carbon in their
deep root
system and take
up nutrients and
water more
efficiently

Wheat annual

NovoCrops Center (Novo Nordisk Foundation € 10 mio; 2020-26)

۵.	
Θ	
0	
=	١
>	١
\rightarrow	
-	
=	
\circ	
+	
ത	
()	
.≃	
\equiv	
70	
~ /	
Θ	
\vdash	
_	
\circ	
\Box	

	Plant	Wild-type properties	Target traits
De novo	Barley	Disease resistance Protein quality	Non-brittle rachis Hull-less grains Reduced height
	Potato	Disease resistance Glycemic properties	Adaptation to long-day photoperiod Elimination of alkaloids in tubers
Accelerated	Alfalfa	Wide environmental adaptability Resistance to frequent cutting	Delayed flowering Increased vegetative growth
	Lupin	Herbivore resistance High content of good- quality protein	Early flowering Elimination of alkaloids in seeds
	Quinoa	Resistance to water- related stresses Exceptional nutritional qualities	Increased grain size and yield Elimination of saponins in seeds
	Int. wheatgrass	Perennial with efficient nutrient and water use Resistance to frequent cutting	Short stems, seed shattering and increased grain size

