

Clonación de una nueva histidín amonio liasa de fuentes halófilas

Universidad de Almería Flor Ximena Cadena Aponte¹, Felipe Rodríguez Vico¹, Lellys Mariela Contreras Moyeja¹, Josefa María Clemente Jiménez¹, Francisco Javier Las Heras Vázquez¹.

¹ Área de Bioquímica y Biología Molecular. Dpto. Química y Física. Universidad de Almería (UAL)

Introducción

Serratia marcescens es una bacteria halófila moderada capaz de sintetizar numerosos productos extracelulares que incluyen exoenzimas y metabolitos secundarios¹. En los últimos años *S. marcescens* ha sido relacionada con una función en biorremediación debido a su gran capacidad para producir enzimas hidrolíticas de potencial interés industrial. La enzima histidín amonio-liasa (HAL) cataliza el primer paso en la vía de degradación no oxidativa de la L-histidina. En este trabajo se ha buscado el gen que codifica para la HAL en *S. marcescens* con la finalidad de clonarlo y estudiar su expresión soluble. La clonación se hizo mediante la técnica "sin costura" (In-Fusión)² (Figura 1), linealizando el plásmido pBBM35³ con las enzimas de restricción *Nde*I y *Bam*HI (Figura 2) y amplificación por PCR del gen *hal* de *Sm*H1 (Figura 3).

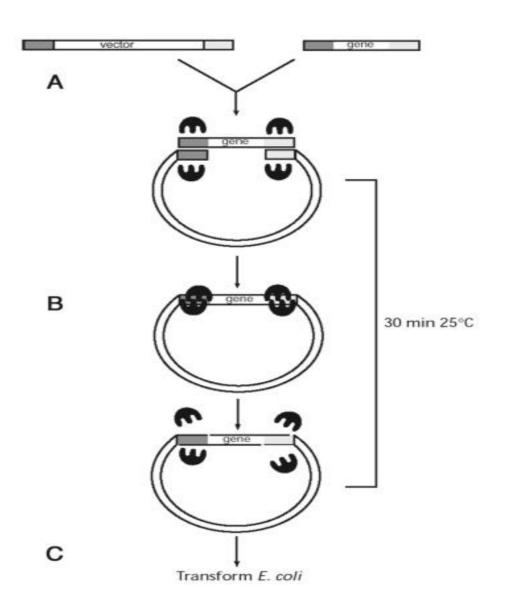
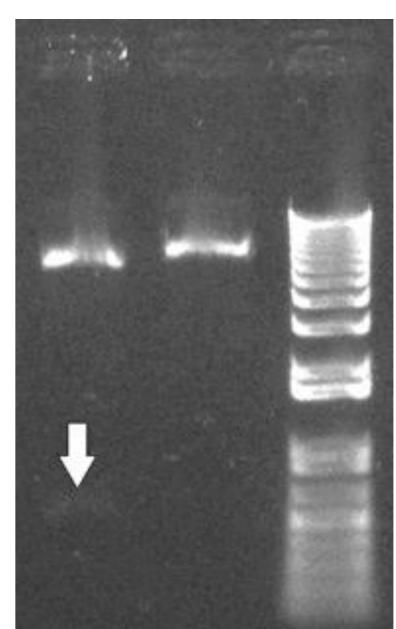
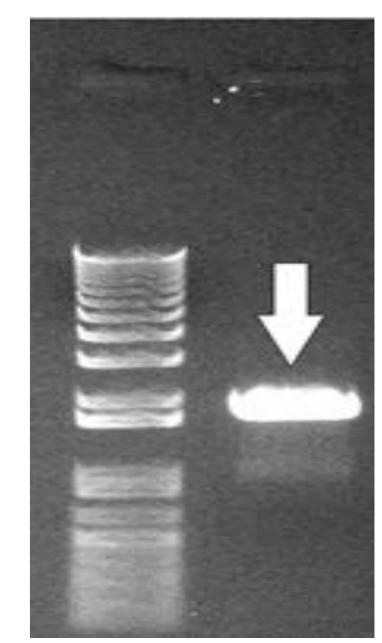




Figura 1. Clonación In-Fusion.

(A) Mezcla de reacción. (B)
Alineamiento del producto de
PCR y actividad exonucleasa 3'
sobre la región monocatenaria (C)
Las mellas se sellan después de la
transformación de *E. coli*.

Figura 2. Linealización del plásmido pBBM35 con *Nde*I y *Bam*H1.

Figura 3. Amplificación por PCR del gen *hal* de *Sm*H1.

Resultados y Discusión

Se analizaron 44 genomas de *S. marcescens* de los cuales 26 mostraron secuencias compatibles con una probable histidín amonio liasa (HAL), que se agruparon en 7 tipos diferentes en base a la secuencia aminoacídica (**Tabla 1**). La secuencia seleccionada perteneció al grupo de secuencias tipo 0, ya que posee la misma secuencia que la descrita como consenso para los 7 tipos. La secuencia seleccionada para diseñar los cebadores que amplifican el gen *hal* fue ATCC 13880. La cepa de *S.marcescens* utilizada en este trabajo es H1 (*Sm*H1).

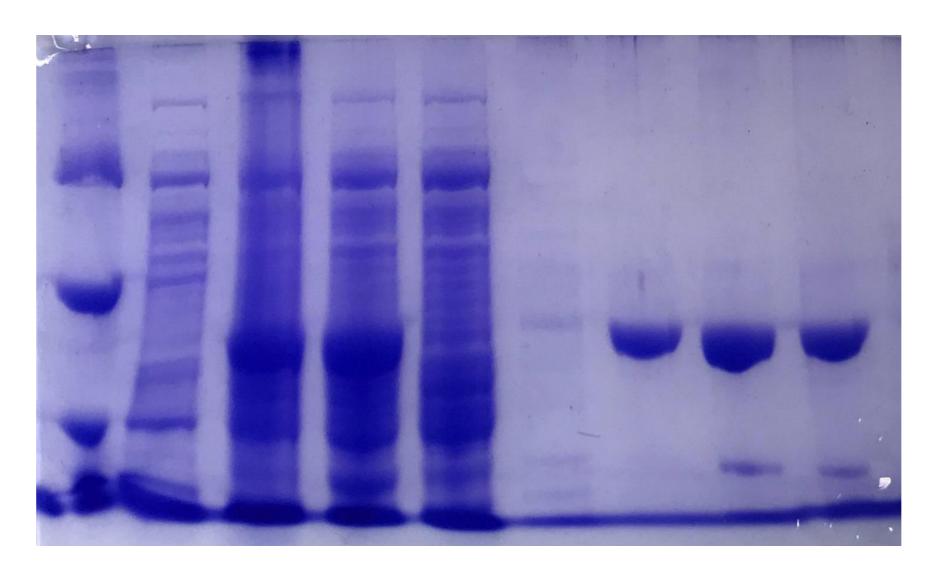
Utilizando el método In-Fusion se clonó el fragmento amplificado del gen *hal* de la cepa *Sm*H1 en el plásmido de expresión pBBM35³. El análisis por secuenciación reveló la clonación direccional del gen en dicho plásmido, denominándose el nuevo vector recombinante pJHV105 (**Figura 4**). El análisis de la secuencia aminoacídica (**Figura 5**) mostró un 100% de homología con la secuencia primaria de las enzimas del tipo 0. Sin embargo, se encontraron 49 cambios en la secuencia nucleotídica, 48 de ellos en la tercera base del triplete y 1 en la primera base. Además, de esos 49 cambios 40 son transiciones (16 A-T, 24 T-C) y 9 son transversiones (4 G-C, 2 G-T, 2 A-C y 1 AT) (**Tabla 2**). No queda claro si esta variación se debe a que es un gen que se expresa poco en *S. marcescens*, o bien se trata de adaptaciones como simbionte, ya que también es una bacteria patógena.

Se expresó y purificó la enzima recombinante, obteniéndose una única banda en la electroforesis en condiciones desnaturalizantes (SDS-PAGE) de masa aparente de 51 kDa (**Figura 6**). Este tamaño muy similar al teórico esperado para el monómero a partir de su secuencia aminoacídica (54kDa). El ensayo cualitativo de actividad enzimática de HAL *Sm*H1 evidenció que la enzima se purificó de forma activa (**Figura 7**), siendo esta la primera enzima HAL del género *Serratia* descrita hasta la fecha.

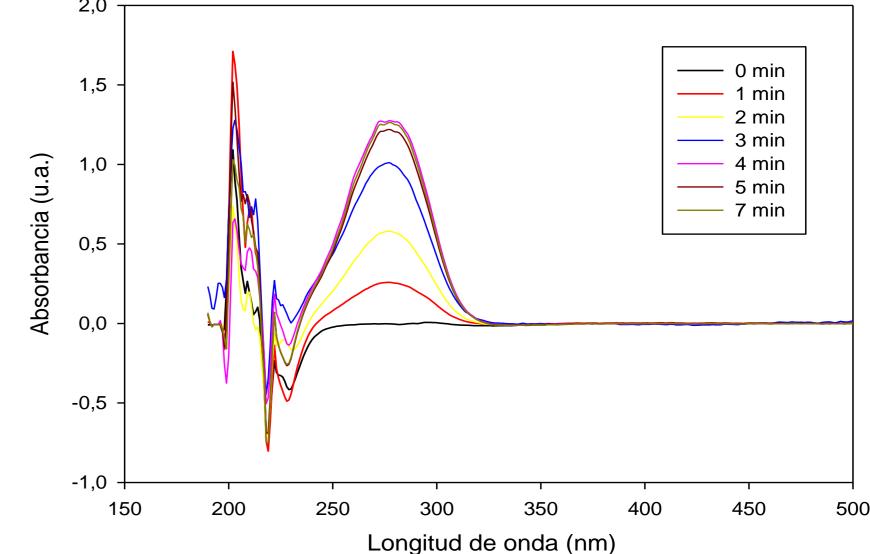
Tipo	Cambio en la secuencia	Número de secuencias	Nombre de las secuencias
0		10	SmATCC13880HAL, SmCAV1761HAL, SmAR_0099HAL, SmAR_0124HAL, SmWVU_010HAL, SmUMH3HAL, SmWVU_004HAL, SmWVU_002HAL, SmAR0122HAL y SmAR0121HAL
1	A34G	8	Sm95HAL, SmBWH_35HAL, SmWVU_006HAL, SmUMH1HAL, SmUMH2HAL, SmUMH6HAL, SmUMH10HAL y SmUMH11HAL
2	Q38R	1	SmSGAIRO764HAL
3	P23S y S430I	1	<i>Sm</i> AR_0091HAL
4	G322S	1	SmWVU_008HAL
5	S430I	4	Smar_0027hal, Smfdaargos65hal, Sm12TMhal y Smumh9hal
6	A34G y D71N	1	SmWVU_003HAL

Tabla 1. Secuencias de HAL encontradas en los 26 genomas de *S. marcescens*. Los tipos de 1 a 6 representan secuencias con uno o dos aminoácidos diferentes al tipo 0.

	rhaB	CcoRI	
	promoter		
rop	6000 5000 pJHV105 6159 bps		
	4000	6.	xHis
	3000		HindII
	ori	A.mpR Prof Scal	SspI


Figura 4.. Representación del plásmido recombinante pJHV105 con el gen *hal* de *Sm*H1 clonado.

MKALTIRPGKLTLAQLRDVYQHPVTLTLDDNAYAPIQQSVACVERIVEENRT
TYGINTGFGLLASTRIARDDLENLQRSIVLSHAAGVGEPTDDNLVRLIMVLKI
NSLSRGFSGIRLEVIQALIALVNAEVYPHIPLKGSVGASGDLAPLAHMSLVLL
GEGQARHQGQWLPATEALAKAGLKPLTLAAKEGLALLNGTQVSAAFALRG
LFDAEDLFAAATVAGSLTVEAALGSRSPFDARIHEVRGQRGQIDAALAYRHL
LGARSEVSDSHRNCEKVQDPYSLRCQPQVMGACLTQIRQAAEVLEIEANAV
SDNPLVFAEQGDVLSGGNFHAEPVAMAADNLALAFAEIGSLSERRISLMMD
KHMSQLPPFLVENGGVNSGFMIAQVTAAALASENKALAHPSSVDSIPTSANQ
EDHVSMAPAAGRRLWSMADNVRGILAVEWLAACQGLDFRNGLKTSEGLEQ
ARRLLREHVSFYDKDRFFAPDIEAASQLLAAGHLTSLLPAALLPSQAGSHHH
HHH-


Figura 5. Secuencia aminoácidica de la proteína HAL de *Sm*H1. Se resalta el primer aminoácido metionina (M sombreada en verde), los 6 residuos de histidina en el extremo C-terminal (sombreado en amarillo).

AMINOÁCIDO	AMINOÁCIDO MUTACIONES SILENCIOSAS								
G	GGA ¹⁷⁷	GGU^{786}	GGC ⁸⁷³	GGC ⁹⁶⁶	GGU^{1275}				
GLICINA	GGG	GGC	GGU	GGU	GGC				
A	GCG^{102}	GCA ³⁷⁵	GCC^{536}	GCG ⁵⁷⁹	GCG^{1035}	GCC ¹⁰⁵⁵			
ALANINA	GCC	GCG	GCG	GCA	GCA	GCU			
V	GTC ⁵⁷	GUC ³⁷⁵	GUU ³⁹³	GUA^{1005}	GUG ¹⁰⁶¹				
VALINA	GTG	GUU	GUC	GUG	GUC				
L	CUG ⁵⁸⁰	CUC ¹⁴⁷⁶							
LEUCINA	UUG	CUA							
I	AUU^{360}								
ISOLEUCINA	AUC								
F	UUU^{1038}								
FENILALANINA	UUC								
P	CCU ²⁴	CCA ³⁹⁹	CCA ⁸⁶¹	CCG ¹²⁰⁶					
PROLINA	CCG	CCG	CCG	CCA					
Y	UAC ⁹⁹	UAU ⁷⁷¹							
TIROSINA	UAU	UAC							
S	UUC ⁴²⁰	UCC^{432}	AGC^{462}	UCU ⁶⁹⁹					
SERINA	UCA	UCU	AGU	UCC					
T	ACU^{159}								
TREONINA	ACA								
N	AAC^{225}	AAC^{285}							
ASPARAGINA	AAU	AAU							
Q		CAG^{597}	CAA^{1473}						
GLUTAMINA	CAA	CAA	CAG						
D		GAU ⁵⁴²	GAC ¹⁴³⁷						
ASPARTATO	GAG	GAC	GAU	1045					
E		GAA ⁹⁶⁰	GAA ¹⁰⁵⁹	GAA ¹²⁴⁵					
GLUTAMATO	GAG	GAG	GAG	GAG					
K	AAG ¹⁰⁸⁹								
LISINA	AAA	C C TT ² 40	0.0.0004	0.0.01201					
R	CGU ²³⁴	CGT ³⁴⁸	CGC ⁸⁸⁴	CGC ¹²⁸¹					
ARGININA	CGC	CGC	CGU	CGU					
Н	CAC^{123}								
HISTIDINA	CAU								

Tabla 2. Cambios en los tripletes utilizados por las cepas *Sm*H1 y *Sm* ATCC13880. Se indica la posición, con respecto a la secuencia nucleotídica en la que sucede la mutación.

Figura 6. SDS-PAGE de las fracciones obtenidas en la purificación de la proteína recombinante HAL de *Sm*H1.

Figura 7. Curso de la reacción enzimática en función del tiempo.

Referencias

- 1. Clements, T.; Ndlovy, T.; Khan, W.; Broad-spectrum antimicrobial activity of secondary metabolites produced by *Serratia marcescens* strains. *Microbiol. Res.* **2019**. 229, 126329
- 2. Irwin, C.R.; Farmer, A.; Willer, D.O.; Evans, D.H. In-fusion cloning with vaccinia virus DNA polymerase. *Methods in molecular biology*. **2012**. 890, 23-35.
- 3. Stumpp T.; Wilms B.; Altenbuchner. J. Ein neues L-rhamnoseinduzierbares expressionssystem für Escherichia coli. Biospektrum. **2000**. 6,33–36.

Agradecimientos

Este proyecto ha sido financiado a través de los proyectos UAL18-CTS-B032-A y PPUENTE2020/006