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Some results in fuzzy metric spaces

Abstract

The problem of constructing a satisfactory theory of fuzzy metric spaces has been
investigated by several authors from different points of view. In particular, and by
modifying a definition of fuzzy metric space given by Kramosil and Michalek, George
and Veeramani have introduced and studied the following interesting notion of a fuzzy
metric space: A fuzzy metric space is an ordered triple (X, M, x) such that X is a set, *
is a continuous t-norm and M is a function defined on X x X x]0, +oc[ with values in
10, 1] satisfying certain axioms and M is called a fuzzy metric on X.

It is proved that every fuzzy metric M on X generates a topology 7y on X which has as
a base the family of open sets of the form B(x,e,t) = {x € X,0 < e < 1,t > 0} where
B(x,e,t) ={y e X: M(x,y,t) >1 —¢e}foralle €]0,1[and t > 0.

The topological space (X, 7) is said to be fuzzy metrizable if there is a fuzzy metric M
on X such that = = 7. Then, it was proved that a topological space is fuzzy metrizable
if and only if it is metrizable. From then, several fuzzy notions which are analogous to
the corresponding ones in metric spaces have been given. Nevertheless, the theory of
fuzzy metric completion is, in this context, very different to the classical theory of metric
completion: indeed, there exist fuzzy metric spaces which are not completable.

This class of fuzzy metrics can be easily included within fuzzy systems since the value
given by them can be directly interpreted as a fuzzy certainty degree of nearness, and
in particular, recently, they have been applied to colour image filtering, improving some
filters when replacing classical metrics

In this lecture we survey some results and questions obtained in recent years about
this class of fuzzy metric spaces.
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From probabilistic metric spaces to fuzzy metric spaces

From probabilistic metric spaces to fuzzy metric spaces

Probabilistic metric spaces where introduced by K. Menger [21] who generalized the
theory of metric spaces. In the Menger’s theory the concept of distance is considered
to be statistical or probabilistic, i.e. he proposed to associate a distribution function
Fx.y, with every pair of elements Xx, y instead of associating a number, and for any
positive number t, interpreted Fyy(t) as the probability that the distance from x to y be
less than t.

Recall [28] that a distribution function F is a non-decreasing, left continuous mapping

from the set of real numbers R into [0, 1] so that tig;{ F(t) = 0and sup F(t) = 1.
teR

In the sequel H will denote the distribution function given by

0 t<0
H(t):{ 1 t>0

We denote by A the set of distribution functions, and by A™ the subset of A consisting
of those distribution functions F such that F(0) = 0.
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From probabilistic metric spaces to fuzzy metric spaces

A probabilistic metric space (briefly PM space) [28] is a pair (X, F) such that X is a
nonempty set and F is a mapping from X x X into A", whose value F(x, y) denoted
by Fxy, satisfies for all x, y, z € X:

(PM1) Fyy(t) =1forallt > 0ifand only if x = y.

Condition (PM1) is equivalent to the statement x = y if and only if Fxy = H.
Conditions (PM1)-(PM3) are generalizations of the corresponding well-known
conditions satisfied by a classical metric. In the beginning (PM3) was a controvert
axiom (see [28]. Every metric space (X, d) may be regarded as a PM space. One has
only to set Fxy,(t) = H(t — d(x, y)) foreach x, y € X.

In his original formulation [21] Menger instead of (PM3) gave the following condition

(PM3)’ Fxz(t+ 8) > T(Fxy(t), Fyz(s)) forallx,y € X, t,s>0
where T is a mapping from [0, 1] x [0, 1] into [0, 1] satisfying
T'(c,d)>T(a,b)forc>a, d>b
T'(a,b) = T(b,a)
T(1,1) =1
T(a,1) >0fora>0
It is immediately that (PM3)’ contains (PM3).
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From probabilistic metric spaces to fuzzy metric spaces

Nowadays, after the study in [28] of the axiomatic of probabilistic metric spaces,
particularly, on the triangle inequality (PM3)’, the next definitions are commonly
assumed:
A binary operation % : [0, 1] x [0, 1] — [0, 1] is called a f-norm if it satisfies the
following conditions:

(i) * is associative and commutative

(i) ax 1 = aforevery a € [0, 1]

(i) ax b < cxdwhenevera< cand b < d,fora,b,c,de[0,1]
If, in addition, * is continuous, then x is called a continuous t-norm.
The three most commonly used continuous t-norms in fuzzy logic are the minimum,

denoted by A, the usual product, denoted by - and the Lukasievicz t-norm, denoted by
£ (xLy = max{0,x + y — 1}). They satisfy the following inequalities:

XLy < x-y<xAy

and
XxyYy < XAy

for each (continuous) t-norm x.

A Menger space is a triple (X, F, =) such that (X, F) is a probabilistic metric space
and x is a t-norm such that for all x,y,z € X andt,s > 0:

(M4) Fxz(t + 8) > Fxy(t) * Fyz(S) )
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From probabilistic metric spaces to fuzzy metric spaces

The following results were given in [28].

Let x be a point of the PM space (X, F). The set of all points in X
B(x,r,t) ={y e X: Fy(t) >1—r}

where r €]0,1[, t > 0 is called a neighborhood of x.

According to this definition, a sequence {xn} in @ PM space is said to converge to a
point x (denoted x, — x) if for every r €]0, 1[, t > 0 there exists ng € N (ny depends
on r and t) such that x, € B(x, r, t) whenever n > ng. Notice that x, — x if, and only if,
Fxx, — H,i.e. forevery t > 0 Ii,rqn Fxx,(t) = 1.

If (X, F,x*)is a Menger space and x is continuous then the family
{B(x,r,t):re€]0,1[, t > 0}

is a base for a topology 7= on X, called topology induced by F, and this topology is
Hausdorff.
The family {B(x, r,t) : r €]0,1[, t > 0} is a local base of each x € X in the topology

TF.
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From probabilistic metric spaces to fuzzy metric spaces

The completion of a Menger space was made by Sherwood in [29] (and later
generalized in [30]) as follows.

Let (X, F) be a PM space. Then
(a) A sequence of points {xn} in X is a Cauchy sequence if Fx,x,, — H as
n,m— oo, I.e. Irm Fx.x,(t) =1 forall t > 0.
(b) The space (X, F) is complete if every Cauchy sequence in X is convergent.

(c) Let (X, F) and (Y, F’) be two PM spaces. A mapping ¢ : X — Y is called an
isometry if F(x,y) = F'(p(x), p(y)) foreach x,y € X.

v

The PM spaces (X, F) and (Y, F’) are called isometric if there is a one-to-one
isometry from X onto Y.
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From probabilistic metric spaces to fuzzy metric spaces

Definition

Let (X, F, ) be a Menger space where x is continuous. The Menger space
(X*, F*,0) is a completion of (X, F, x) if (X, F) is isometric to a dense subset of
(X*,F*) and x = o.

In the set of all Cauchy sequences in X is defined the equivalent relation {xp} = {yn} if
{Fx,y,} — H, and the set of all equivalent classes determined by this relation is
denoted by X*.

Based on the completeness of the Levi metric space of distribution functions (A, L), it
is possible to define

F*(p*,q"*) = lim"F(pn, qn)

for all p*,g* € X*, where {pn} and {gn} are Cauchy sequences of p* and g*,
respectively and it is proved that (X*, F*, x) is a complete Menger space.

Further, the mapping ¢ : X — X*, which assigns to each point x in X the equivalence
class of Cauchy sequences determined by the constant sequence of value x, is an
isometric embedding of X into X* and (X) is dense in X*. This completion is unique
up to an isometry.
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From probabilistic metric spaces to fuzzy metric spaces

In 1965, Zadeh [33] introduced the concept of fuzzy set which transformed and
stimulated almost all branches of Science and Engineering including Mathematics. A
fuzzy set can be defined by assigning to each element of a set a value in [0, 1]
representing its grade of membership in the fuzzy set. Mathematically, a fuzzy set A of
X isamapping A: X — [0, 1].

The concept of fuzziness found place in probabilistic metric spaces. The main reason
behind this was that, in some cases, uncertainty in the distance between two points
was due to fuzziness rather than randomness. With this idea, in 1975, Kramosil and
Michalek [20] extended the concept of probabilistic metric spaces to the fuzzy situation
as follows.
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From probabilistic metric spaces to fuzzy metric spaces

[20, 6] The tern (X, M, x) is a fuzzy metric space if X is a nonempty set, x is a
continuous t-norm and M is a fuzzy set on X? x R satisfying forall x,y,z € X, t,s € R
the following axioms:

(KM1) M(x,y,0) =0 forallt <O0.

(KM2) M(x,y,t) =1forallt >0 ifandonly ifx = y.
(KM3) M(x,y,t) = M(y, x, t)

(KM4) M(x,y,t) « M(y,z,8) < M(x,y,t+S)

(KM5) The function My, : R — [0, 1] defined by My (t) = M(x, y,t) forallt > 0 is
left continuous.

(KM6) lim M(x,y, 1) = 1

From the above axioms one can show that M,y is an increasing function.
If (X, M, %) is a fuzzy metric space we say that (M, x) (or simply M) is a fuzzy metric on
X.
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From probabilistic metric spaces to fuzzy metric spaces

Any fuzzy metric M defined on X is equivalent to a Menger space (Corollary of
Theorem 1) in the sense thatforall x,y € X, t € R

M(X,y, t) = ny(t)

Then, by the last formula, since * is continuous, we can deduce from M a topology T
in an analogous way to that in Menger spaces. Moreover, if we translate the above
concepts and results relative to completion in Menger spaces we obtain imitating the
Sherwood’s proof that every fuzzy metric space in the sense of Kramosil and Michalek
has a completion which is unique up to an isometry.
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From probabilistic metric spaces to fuzzy metric spaces

In a modern terminology [6, 3] a fuzzy metric (in the sense of Kramosil and Michalek)
M on X is a fuzzy set on X? x [0, co[ satisfying axioms (KM2)-(KM5), being * a
continuous t-norm and where (KM1) is replaced by

(KM1) M(x, y,0) = 0

Now, essentially because (KM6) has been removed, in this case a fuzzy metric cannot

be regarded as a Menger space.
Nevertheless, in the same way than in the Menger spaces theory, a topology 7
deduced from M is defined on X, and the concepts relative to completeness in PM

spaces can be translated to the fuzzy theory.
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Fuzzy metric spaces. Preliminaries

The concept of fuzzy metric space we deal with is due to George and Veeramani [3]
and the axiomatic of this theory is exposed as follows.

([3]). A fuzzy metric space is an ordered triple (X, M, x) such that X is a (nonempty)
set, x is a continuous t-norm and M is a fuzzy set on X x X x]0, 4+oo[ satisfying the
following conditions, for all x,y,z € X, s,t > 0 :

(GV1) M(x,y,t) > 0;

(GV2) M(x,y,t) =1 ifand only if x = y;

(GV3) M(x,y,t) = M(y, x, t);

(GV4) M(x,y,t)« M(y,z,8) < M(x,z,t+S);
(GV5) M(x,y,_) :]0, +o0[—]0, 1] is continuous.

M(x, y, t) is considered as the degree of nearness of x and y with respect to t.

The axiom (GV1) is justified by the authors because in the same way that a classical
metric cannot take the value oo then M cannot take the value 0.

The axiom (GV2) is equivalent to the following:

M(x,x,t)=1forallx € Xandt > 0,and M(x, y,t) < 1forall x # yandt > 0.

The axiom (GV2) gives the idea that when x = y the degree of nearness of x and y is
perfect, or simply 1, and then M(x, x, t) = 1 for each x € X and for-each ¢ > 0.
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Fuzzy metric spaces.

Fuzzy metric spaces. Preliminaries

Axioms (GV3)-(GV4) coincide with (KM3)-(KM4), respectively.

Finally, in (GV5) the authors assume that the variable t behave nicely, that is assume
that for fixed x and y, t — M(x, y, t) is a continuous function. Accordingly to the
terminology of PM spaces we will denote this function by My, .

From now on by a fuzzy metric space we mean a fuzzy metric space in the sense of
George and Veeramani. Contrary to that what happens with the (original) spaces of
Kramosil and Michalek, these spaces cannot be regarded as PM spaces.

Let X be a non-empty set. If (M, ) is a fuzzy metric on X and < is a continuous t-norm
such that ¢ < %, then (M, o) is a fuzzy metric on X. (The converse is false).

In consequence if (M, A) is a fuzzy metric on X, then (M, x) is a fuzzy metric on X for
all continuous f-norm .
The following is a well-known result.

The real function My, of Axiom (GV5) is increasing for all x, y € X. \
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Fuzzy metric spaces.

Fuzzy metric spaces. Preliminaries

If (X, M, x) is a fuzzy metric space then it can be considered as a fuzzy metric space in
the modern version of Kramosil and Michalek mentioned in Remark 1.6 defining
M(x,y,0) = 0, since (GV2) and (GV5) are stronger than (KM2) and (KM5),
respectively.
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Fuzzy metric spaces.

Fuzzy metric spaces. Preliminaries

Let (X, d) be a metric space. Denote by a - b the usual product for all a, b € [0, 1], and
let My be the fuzzy set defined on X x X'x]0, +oo[ by

t

Then (My, ) is a fuzzy metric on X called standard fuzzy metric (see [3]).

The reader can notice the analogy between the next concepts and results stated for
fuzzy metric spaces, with the corresponding ones in PM spaces. Their new quotes
correspond to their appearance in the fuzzy setting.

George and Veeramani proved in [3] that every fuzzy metric M on X generates a
topology 7y on X which has as a base the family of open sets of the form
{By(x,e,t) : x € X,0< e <1, t>0}, where

By(x,e,t) ={y € X: M(x,y,t) >1—¢e}forall x € X,e €]0,1[and t > 0. ltis also
said thet 7 is the topology induced by M or deduced from M.

A topological space (X, 7) is said to be fuzzy metrizable if there exists a fuzzy metric M
on X compatible with 7, i.e. Ty = 7.

If (X, d) is a metric space, then the topology generated by d coincides with the
topology 7y, generated by the fuzzy metric My ([3]). Consequently, every metrizable
topological space is fuzzy metrizable.

Definition

A fuzzy metric M on X is said to be stationary, [10], if M does not depend on t, i.e. if for
each x,y € X, the function My ,(t) = M(x, y, t) is constant. In this case we write
instead of M(x X, €) instead of By,
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Examples of fuzzy metric spaces (Sapena, 2001)

(Fuzzy metrics deduced from metrics [26]). Let (X, d) be a metric space, and
denote B(x, r) the open ball centered in x € X with radius r > 0.
(i) Foreach n € N, (X, M, \) is a fuzzy metric space where M is given by

M(x,y,t) = —gozy » forallx,y € X,t>0,

e N

and Ty = 7(d).

(i) Foreach k,m e Rt, n> 1, (X, M, A) is a fuzzy metric space where M is given by

M(x,y,t) = kt,,+r’ffd(x,y) , forall x,y € X,t >0,

and 7y = 7(d).

The above expression of M cannot be generalized to n € R™ (take the usual metric d
onR, k=m=1,n=1/2). Nevertheless is easy to verify that (M, -) is a fuzzy metric
on X, forn > 0.
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Examples of fuzzy metric spaces (Sapena, 2001)

Next, we will give fuzzy metrics which are not deduced explicitly from a metric.

([32], Example 2.5.) Let X = R*. Define forx,y € X, t > 0

min{x, y} +t

M t) =
(x,, ) e

Then (M, -) is a fuzzy metric on X.

Yy

Let X be the real interval |0, +oo[, K > 0 and a > 0. It is easy to verify that (X, M, -) is
a stationary fuzzy metric space,where M is defined by

min{x,y} + K ) .
max{x,y} + K

M(x,y) = ( forall x,y € X.

v

(X, M, A) is not a fuzzy metric space. Indeed, fora =1, K=0ifwetakex =1,y =2
and z = 3, then
M(x,z,t+ ) = I <min{, 2} = min{M(x, y, t), M(y, z,5)}.
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Examples of fuzzy metric spaces (Sapena, 2001)

Next, we will give examples of fuzzy metric spaces for the t-norm £ which are not for
the usual product.

Let X be the real interval |1, 4-oo[ and consider the mapping M on X?x]0, +-oco[ given
by

M(a,b) =1— (55 — =v5) forall a,be X.

anb

(X, M, £) is a stationary fuzzy metric space and (X, M, -) is not a fuzzy metric space.
Further, the topology 7, on X is the usual topology of R relative to X.

Let X be the real interval |2, +oo[ and consider the mapping M on X2 x]0, +oo|

defined as follows
1 ifa=>b
M(a, b) =

-+ ifa#+b

Q=
o=

It is easy to verify that (X, M, £) is a stationary fuzzy metric space and (X, M, -) is not
a fuzzy metric space.

o
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Examples of fuzzy metric spaces (Sapena, 2001)

Let {A, B} be a nontrivial partition on the real interval X =]2, +oco[. Define the mapping
M on X?x]0, 4+oo[ as follows

( 1_<1 1) if x,yeA or x,yeB

XAy — xVy
M(x,y) = 1

+ elsewhere

1,1
\ X y

Then (X, M, £) is a stationary fuzzy metric space and (X, M, ) is not a fuzzy metric
space.
4

Definition

A subset A of X is said to be F-bounded if there existt > 0 and r €]0, 1[ such that
M(x,y,t) >1 —r forallx,y € A.
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Examples of fuzzy metric spaces (Sapena, 2001)

Proposition

If (X, d) is a metric space, then: A C X is bounded in (X, d) if and only if it is
F-bounded in (X, My, *).

Let (X, M, x) be a fuzzy metric space and k €]0, 1[. Define
N(x,y,t) = max{M(x,y,t), k},

foreach x,y € X, t > 0. Then (N, x) is an F-bounded fuzzy metric on X, which
generates the same topology that M.

4

Let k > 0. Suppose that (X, M, x) is a fuzzy metric space where x is one of the
t-norms given above, and define:

k+ M(x,y,t)
14+ k

N(x,y,t) =

forallx,y € X, t > 0.
Then, (N, %) is an F-bounded fuzzy metric on X, which generates the same topology
that M.

4
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On non-Archimedean fuzzy metrics

Recall that a metric d on X is called non-Archimedean if
d(x,z) < max{d(x,y),d(y,z)}, forall x,y,z € X.

Definition

A fuzzy metric (M, %) on X is called non-Archimedean if
M(x,z,t) > min{M(x, y,t), M(y,z,t)}, forallx,y,ze X,t> 0.

Proposition

Let d be a metric on X and My the corresponding standard fuzzy metric. Then, d is
non-Archimedean if and only if My is non-Archimedean.

Recall that a completely regular space is called strongly zero-dimensional if each
zero-set is the countable intersection of sets that are open and closed, and that a T
topological space (X, 7) is strongly zero-dimensional and metrizable if and only if there
is a uniformity &/ compatible with 7 that has a countable transitive base.

A topological space (X, ) is strongly zero-dimensional and metrizable if and only if
(X, ) is non-Archimedeanly fuzzy metrizable.
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Metrizability of fuzzy metric spaces (Gregori-Romaguera, 2002)

Uniform structure in the fuzzy metric space (X, M, x)
Let (X, M, x) be a fuzzy metric space. For each n € N define:
1 1
Un:{(x,y) EXXX:M(Xayag) >1 - E}

The (countable) family {Up : n € N} is a base for a uniformity i/, on X such that the
topology induced by U4y, agrees with the topology induced by the fuzzy metric M. The
uniformity Uy, will be called the uniformity deduced from M or generated by M.
Applying the Kelley’s metrization lemma the following results hold.

Let (X, M, x) be a fuzzy metric space. Then, (X, 1) is a metrizable topological space. \
A topological space is metrizable if and only if it admits a compatible fuzzy metric. \
Every separable fuzzy metric space is second countable. l
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Metrizability of fuzzy metric spaces (Gregori-Romaguera, 2002)

Definition (George and Veeramani, 1995)

A sequence {xn} in a fuzzy metric space (X, M, x) is called a Cauchy sequence (or
M-Cauchy), if for each € €]0,1[, t > 0 there exists ng € N such that
M(xn, Xm,t) > 1 — g, forallm,n > ng.

Proposition

{xn} is a d—Cauchy sequence (i.e., a Cauchy sequence in (X, d)) if and only if it is a
Cauchy sequence in (X, My, *).

Let us recall that a metrizable topological space (X, 7) is said to be completely
metrizable if it admits a complete metric. On the other hand, a fuzzy metric space
(X, M, x) is called complete if every Cauchy sequence is convergent. If (X, M, x) is a
complete fuzzy metric space, we say that M is a complete fuzzy metric on X.

Let (X, M, x) be a complete fuzzy metric space. Then, (X, 1)) is completely
metrizable.

Corollary

A topological space is completely metrizable if and only it admits a compatible
complete fuzzy metric.
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Compactness of fuzzy metric spaces (Gregori and Romaguera, 2002)

Definition

A fuzzy metric space (X, M, x) is called precompact if for each r, with0 < r < 1, and
eacht > 0, there is a finite subset A of X, such that X = |, 4 B(a, r, t). In this case,
we say that M is a precompact fuzzy metric on X.

A fuzzy metric space (X, M, x) is called compact if (X, mp) is a compact topological
space.

A fuzzy metric space is precompact if and only if every sequence has a Cauchy
subsequence.

A fuzzy metric space (X, M, x) is separable if and only if (X, Ty) admits a compatible
precompact fuzzy metric.
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Compactness of fuzzy metric spaces (Gregori and Romaguera, 2002)

Let (X, M, x) be a fuzzy metric space. If a Cauchy sequence clusters to a point x € X,
then the sequence converges to x.

A fuzzy metric space is compact if and only it is precompact and complete. \

A metrizable topological space is compact if and only every compatible fuzzy metric is
precompact.

A metrizable topological space is compact if and only every compatible fuzzy metric is
complete.
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Continuity and uniform continuity (Gregori, Romaguera, Sapena, 2001)

Let us recall that a uniformity &/ on a set X has the Lebesgue property provided that for
each open cover G of X there is U € U such that {U(x) : x € X} refines G, and U/ is
said to be equinormal if for each pair of disjoint nonempty closed subsets A and B of X
there is U € U such that U(A) N B = (). A metric d on X has the Lebesgue property
provided that the uniformity U/, induced by d, has the Lebesgue property and d is
equinormal provided that U/, so is.

Let (X, M) and (Y, N) be fuzzy metric spaces. In [4] is given the following definition.

Definition

A mapping from X to Y is said to be uniformly continuous if for each  €]0, 1[ and each
t > 0, there exist r €]0,1[ and s > 0 such that N(f(x), f(y),t) > 1 — e whenever
M(x,y,s) >1—r.

It is easy to verify that this definition is equivalent to consider f : (X,Uy) — (Y,Uy) as
uniform continuous with respect to the uniformities U/, and Uy deduced from M and N
respectively, and then it is continuous from (X, ) to (Y, 7n).

Similarly to the classical metric case, if f : (X, M) — (Y, N) is uniformly continuous
and {xn} is a Cauchy sequence in X then {f(x,)} is a Cauchy sequence in Y.

Definition

We say that a real valued function f on the fuzzy metric space (X, M, x) is R-uniformly
continuous provided that for each € > 0 there exist r €]0,1[ and s > 0 such that
1f(x) — f(y)| < € whenever M(x,y,s) > 1 —r.

V. Gregori Some results in fuzzy metric spaces




Continuity and uniform continuity (Gregori, Romaguera, Sapena, 2001)

Definition

A fuzzy metric (M, x) on a set X is called equinormal if for each pair of disjoint
nonempty closed subsets A and B of (X, Ty) there is s > 0 such that
sup{M(a,b,s):ac A, be B} < 1

Definition

We say that a fuzzy metric (M, x) on a set X has the Lebesgue property if for each
open cover G of (X, Ty) there existr €]0,1[ and s > 0 such that {By(x,r,s) : x € X}
refines G.

Notice that if (X, d) is a metric space, then the fuzzy metric (My, *) has the Lebesgue
property (resp. is equinormal) if and only if d has the Lebesgue property (resp. is
equinormal).
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Continuity and uniform continuity (Gregori, Romaguera, Sapena 2001)

In [13] fuzzy metric spaces for which real valued continuous functions are uniformly
continuous, were characterized as follows.

For a fuzzy metric space (X, M, x) the following are equivalent.

(1) For each fuzzy metric space (Y, N, x) any continuous mapping from (X, tp) to
(Y, Tn) is uniformly continuous as a mapping from (X, M, x) to (Y, N, x).

(2) Every real valued continuous function on (X, tpy) is R-uniformly continuous on
(X, M, x).

(3) Every real valued continuous function on (X, Tys) is uniformly continuous on
(X, Unm).

(M, x) is an equinormal fuzzy metric on X.
Uy Is an equinormal uniformity on X.
The uniformity Uy, has the Lebesgue property.

The fuzzy metric (M, x) has the Lebesgue property.

V. Gregori Some results in fuzzy metric spaces




Continuity and uniform continuity (Gregori, Romaguera, Sapena, 2004)

In order to state new versions of the classical Banach Contraction Principle for fuzzy
metric spaces, in [7] the authors gave a concept of t-uniformly continuous function,
closer to a concept of contractive mapping, as follows.

Definition

A mapping f from a fuzzy metric space (X, M) to a fuzzy metric space (Y, N) is called
t-uniformly continuous if for each € €]0,1[ and each t > 0, there exists r €]0, 1[ such
that N(f(x), f(y),t) > 1 — e whenever M(x,y,t) > 1 —r.

It was proved in [4] that every continuous mapping form a compact fuzzy metric space
to a fuzzy metric space is uniformly continuous. This result was improved in [14] as
follows.

Proposition

Every continuous mapping from a compact fuzzy metric space (X, M, x) to a fuzzy
metric space (Y, N, x) is t-uniformly continuous.

In [14] Example 1 an example of a uniformly continuous mapping which is not
t-uniformly continuous was given.
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Continuity and uniform continuity (Gregori, Lopez-Crevillen, Morillas, 2009)

As in the classical case the next theorem is satisfied [19].

Let (X, M, ) and (Y, N, x) be two fuzzy metric spaces, D a dense subspace of X and
f: D — Y auniformly continuous mapping. Suppose Y complete. Then, it exists a
unique mapping g : X — Y uniformly continuous that extends f. Further, iff is
t-uniformly continuous, then g is t-uniformly continuous.
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Continuity and uniform continuity (Gregori, Romaguera, Sapena, 2004)

In [14] those fuzzy metric spaces for which real-valued continuous functions are
t-uniformly continuous where characterized as follows.

Definition

A fuzzy metric (M, =) on a set X is called t-equinormal if for each pair of disjoin
nonempty closed subsets A and B of (X, t4) and each t > 0,
sup{M(a,b,t):ac A, be B} < 1.

For a fuzzy metric space (X, M, x) the following are equivalent.

(1) For each fuzzy metric space (Y, N, x) any continuous mapping from (X, myy) to
(Y, 7n) Is t-uniformly continuous as a mapping form (X, M, x) to (Y, N, x).

(2) Any real-valued continuous function on (X, Ty) is t-uniformly continuous from
(X, M, x) to the Euclidean fuzzy metric space (R, M,.|, -).

(3) The fuzzy metric (M, x) is t-equinormal.
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On completion of fuzzy metric spaces (Gregori and Romaguera, 2002)

Given a metric space (X, d) we shall denote by ()N(, a) the (metric) completion of
(X, d).

In a first attempt to obtain a satisfactory notion of fuzzy metric completion we start by
analyzing the relationship between the standard fuzzy metrics of d and d, respectively.

Let (X, d) be a metric space and let f be an isometry from (X, d) onto a dense
subspace of (X, d). The standard fuzzy metric (M-, -) of d is given by

M~}ay7t: ~ _
N t+ d(X,y)

forallx,y € X andt > 0. Hence, we have Mq(x,y,t) = My(f(x),f(y), t) for all
x,ye Xandt > 0.
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On completion of fuzzy metric spaces (Gregori and Romaguera, 2002)

The preceding example agrees with the following natural notions.

Definition

Let (X, M, «) and (Y, N, x) be two fuzzy metric spaces. A mapping f from X to Y is
called an isometry if for each x,y € X and eacht > 0, M(x, y,t) = N(f(x),f(y), t).

As in the classical metric case, it is clear that every isometry is one-to-one.

Definition

Two fuzzy metric spaces (X, M, x) and (Y, N, x) are called isometric if there is an
isometry from X onto Y.

Let (X, M, x) be a fuzzy metric space. A fuzzy metric completion of (X, M, x) is a
complete fuzzy metric space (Y, N, x) such that (X, M, x) is isometric to a dense
subspace of Y.

V. Gregori Some results in fuzzy metric spaces




On completion of fuzzy metric spaces (Gregori and Romaguera, 2002)

Next we show that unfortunately there exists a fuzzy metric space that does not admit
any fuzzy metric completion in the sense of Definition 8.4.

Let (xn)72 4 and (yn):2 4 be two sequences of distinct points such that AN B = (),
where A= {xn: n>3}and B={yn: n> 3}.

Put X = AU B. Define a real valued function M on X x X x (0, oo) as follows:

1 1
M(Xn,Xm) — M(ynaym):1_[n/\m_n\/m]7
1 1

M(xn,ym) = M(ym,Xxn) = e + e

for alln,m > 3. Then (X, M, £) a stationary fuzzy metric space.
y

In [9] it it proved that (M, x) is a not complete fuzzy metric on X, which has not a fuzzy
metric completion.
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Characterizing completable fuzzy metric spaces (Gregori and Romaguera, 2003)

Let (X, M, x) be a fuzzy metric space. Then a pair (an)n, (bn)n, of Cauchy sequences
in X, is called:

a) point-equivalent if there is s > 0 such that limp, M(an, bn, s) = 1.

b) equivalent, denoted by (an)n ~ (bn)n, iflimp M(an, bn, t) =1 forallt > 0.

Yy
Theorem

A fuzzy metric space (X, M, x) is completable if and only if it satisfies the two following
conditions:

(C1) Given two Cauchy sequences (an)n, (bn)n, in X, then

[ — |I,r7n M(an, bn, t)

Is a continuous function on (0, +oc) with values in (0, 1].

(C2) Each pair of point-equivalent Cauchy sequences is equivalent.
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Principal fuzzy metrics (Gregori, Lépez-Crevillen, Morillas, Sapena, 2009)

In [22] the author gave the following definition.

Definition

([22]) Let (X, M) be a fuzzy metric space. A sequence {xn} in X is said to be point
convergent to xo € X iflilr7n M(xn, Xo, tg) = 1 for some ty > 0.

In such a case we say that {xp} is p-convergent to xg for f > 0, or, simply, {xn} is
p-convergent.
Equivalently, {x,} is p-convergent if there exist x € X and fy > 0 such that {xn} is

!
eventually in B(xp, r, f) for each r €]0, 1[ (or, without lost of generality, in B(xp, et fo)

for each n € N).
Clearly {xn} is convergent to xq if and only if {x,} is p-convergent to xq for all t > 0.
The following properties hold [22]:

(1) If Iirr7n M(xn, x,t) = 1 and Ii,r7n M(xn,y,t) = 1then x = y.

(2) If Ii,r7n M(xn, Xg, ty) = 1 then Ii;{n M(xn, , X0, to) = 1 for each subsequence (xn, )
of {xn}.
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Principal fuzzy metrics (Gregori, Lépez-Crevillen, Morillas, Sapena, 2009)

By property (1) the next Corollary is obtained:

If {xn} is p-convergent to xo and it is convergent, then {xn} converges to xy.

Let (X, M) be a completable fuzzy metric space. If {x,} is a Cauchy sequence in X,
and it is p-convergent to xo € X, then {xn} converges to X.
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Principal fuzzy metrics (Gregori, Lépez-Crevillen, Morillas, Sapena, 2009)

An example of a p-convergent sequence which is not convergent is given in the next
example.

([22]) Let {xn} C]0O, 1[ be a strictly increasing sequence convergent to 1 respect to the
usual topology of R and X = {xn} U {1}. Define on X? x R* the function M given by
M(x,x,t) =1 foreachx € X, t > 0, M(Xn, Xm, t) = min{xn, Xm}, for all

m,neN, t>0,and M(xn,1,t) = M(1, xp, t) = min{xn, t} foralln € N, t > 0. Then
(M, x) is a fuzzy metric on X, where a x b = min{a, b}. The sequence {xn} is not

: : 1 1 ., :
convergent since Ilrr’n M(xn, 1, 5) =5 Nevertheless it is p-convergent to 1, since
Ii,r7nM(x,~,,1,1) =1.

. 1 1
Notice that in the above example {1} is open in 7, since B(1, 5 5) = {1}. Onthe

other hand for r €]0, 1[ we have that B(1,r,1) = {Xm, Xm+1, ... } U {1} where xn, is the
first element of {x,} such that 0 < 1 — r < xm,. Hence, the family of open balls
{B(1,r,1) : r €]0,1[} is not a local base at 1. This fact motivates our next definition.

Definition

We say that the fuzzy metric space (X, M, x) is principal (or simply, M is principal) if
{B(x,r,t):r€]0,1[} is a local base at x € X, foreach x € X and eacht > 0.
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Principal fuzzy metrics (Gregori, Lépez-Crevillen, Morillas, Sapena, 2009)

As we have just seen, the fuzzy metric of Example 10.4 is not principal. Next we see
some examples of principal fuzzy metrics.

(a) Stationary fuzzy metrics are, obviously, principal.
(b) The well-known standard fuzzy metric is principal.

d(x,y) . . . .
(c) M(x,y,t) = e~ = , Where d is a metric on X, [3], is principal.

(@) M(x,y, 1) = TIMX Y3+ 1

is a fuzzy metric on R™, [32], which is principal.
max{x,y} +t

The fuzzy metric space (X, M) is principal if and only if all p-convergent sequences are
convergent.
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Principal fuzzy metrics (Gregori, Lépez-Crevillen, Morillas, Sapena, 2009)

Next we give an example of a complete fuzzy metric space which is not principal.

Let X = R* and let o : RT —]0, 1] be a function given by o(t) =t ift <1 and
©(t) = 1 elsewhere. Define the function M on X? x RT by

1 X=Yy

M(X,y, t) = min{x,y}
{ max{x, y} o(l) Y

It is easy to verify that (M, -) is a fuzzy metric on X and, since M(x, y,t) < t, whenever
t €]0,1[ and x # y, it is obvious that the only Cauchy sequences in X are the constant
sequences and so, X is complete.

1 1
This fuzzy metric is not principal. In fact, notice that B(x, 5 5) = {x} foreachx € X

and so 1y is the discrete topology. Now, if we set x =1 andt = 1 we have
B(1,r,1) =]1 —r, - r[ forall r €]0,1[ and so {B(1,r,1) : r €]0,1[} is not a local

base at x = 1, since {1} is open.
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Principal fuzzy metrics (Gregori, Lépez-Crevillen, Morillas, Sapena, 2009)

In the next example, (X, M, -) is a fuzzy metric space which is not principal and not
completable [17].

Let X =]0,1], A= XNQ, B = X - A. Define the function M on X? x R* by
) .
min{x, y} x,yc€Aorx,yec B, t>0
max{x, y}
M(x,y,t) =< minix, ¥ xeA yeBorxeB, yecA t>1
7.y7 - maX{X’y} 7y 7y Y —
minix, y} t elsewhere
(- max{x, y}
It is easy to verify that (M, -) is a fuzzy metric on X. It is proved in [17] that M is not
principal.
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Principal fuzzy metrics (Gregori, Lépez-Crevillen, Morillas, Sapena, 2009)

Continuing the above study we give the next definition.

Let (X, M) be a fuzzy metric space. A sequence {xn} in X is said to be p-Cauchy if for
each e €]0,1[ there are ny € N and ty > 0 such that M(xn, Xm, o) > 1 — € for all
n,m> ng, i.e. m M(xn, Xm, o) = 1 for some ty > 0.

In such a case we say that {x} is p-Cauchy for f > 0, or, simply, {xn} is p-Cauchy.
Clearly {xn} is a Cauchy sequence if and only if {xn} is p-Cauchy for all t > 0 and,
obviously, p-convergent sequences are p-Cauchy.

Definition

The fuzzy metric space (X, M) is called p-complete if every p-Cauchy sequence in X is
p-convergent to some point of X. In such a case M is called p-complete.

Obviously, p-completeness and completeness are equivalent concepts in stationary
fuzzy metrics, and it is easy to verify that the standard fuzzy metric My is p-complete if
and only if My is complete.
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Principal fuzzy metrics (Gregori, Lépez-Crevillen, Morillas, Sapena, 2009)

Proposition
Let (X, M) be a principal fuzzy metric space. If X is p-complete then X is complete.

The assumption that X is principal cannot be removed in the last proposition as shows
the next example.

Consider the fuzzy metric space (X, M, x) of Example 10.4. The sequence {xn}
satisfies !7|7rr,17 M(xn, Xm, t) = 1 for allt > 0, so {xn} is a Cauchy sequence and in

Y

consequence X is not complete, since {xn} is not convergent.

Next we show that X is p-complete.

Let {xn} be a p-Cauchy sequence in X. Then, with an easy argument one can verify
that {xn} must be a convergent sequence to 1 with respect to the usual topology of R
relative to X. Now, Ii,r7n M(xn,1,1) = Ii,r7n xn = 1 and hence {xn} is p-convergent to 1.

One could expect p-Cauchy sequences to be Cauchy sequences in principal fuzzy
metric spaces. In fact, this property is satisfied by all examples of Example 10.6.
Nevertheless, as shown the authors in [17] it is not true, in general, for any principal
fuzzy metric and, in consequence, the converse of the above proposition is not true.
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On continuity and t-continuity (Gregori, Lopez-Crevillén and Morillas (2009)

The definition of continuity of a mapping f from a fuzzy metric space (X, M) to a fuzzy
metric space (Y, N) can be given using four parameters as follows.

f is continuous at xp € X if given € €]0, 1[ and t > 0 there exist § €]0,1[and s > 0
such that M(xp, x,s) > 1 — § implies N(f(xg, f(x),t) > 1 —e.

Obviously the condition of continuity of a mapping f between stationary fuzzy metric
spaces only needs two parameters. Then, thinking in stationary fuzzy metric spaces
and according to the concept of t-uniformly continuous function we give the next
definition, by mean of three parameters.

Definition

We will say that a mapping f from the fuzzy metric space (X, M) to a fuzzy metric
space (Y, N) is t-continuous at xo € X if givene €]0,1[ and t > 0 there exists § €]0, 1]
such that M(xg, x, t) > 1 — 6 implies N(f(xp), f(x),t) > 1 — €.

We will say that f is t-continuous on X if it is t-continuous at each point of X.

If M is a stationary fuzzy metric then each continuous mapping is t-continuous.
Obviously if f is t-continuous at xg then f is continuous at xg. The converse is false, as
shown the authors in [19].

It is obvious that each t-uniformly continuous mapping is f-continuous. The converse is
false. We will see in the next example a t-continuous mapping (and uniformly
continuous) which is not t-uniformly continuous.
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On continuity and t-continuity (Gregori, Lopez-Crevillen and Morillas (2009)

Let X = {1,2,83,---}. Consider on X the fuzzy metric M, for the usual product, given

by '
( min{m,n} -t m#n, t<1
max {m, n}
M(m,n,t) = <
min{m, n}
elsewhere
. max {m, n}

Tm IS the discrete topology on X.

Every function f : X — R is uniformly continuous for any fuzzy metric on R.
Every function f : X — R is t-continuous for any fuzzy metric N on R.

Now, consider the mapping f : X — R defined by

1 Jifxisodd
f(x) = o
O ifxiseven

Consider the fuzzy metric M on X and the standard fuzzy metric M., on R. We will see
that f is not t-uniformly continuous for these fuzzy metrics.

Lett =1 ande = 0.5. Forevery $ e]O,1[thereexistn€Xsuchthatn+1 >1—-6
n 1 1
andsoM(n,n+1,t) = —— > 1—46. Therefore M. (f(n),f(n+1),t) = —— = =
(nnt1,0) = —— > ), 0+ 1), = = = 5

and so f is not t-uniformly continuous.
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On continuity and t-continuity (Gregori, Lopez-Crevillen and Morillas (2009)

The next example shows a larger class than stationary fuzzy metrics in which
continuous functions are t-continuous.

Proposition

Let f be a mapping from the fuzzy metric space (X, M) to the fuzzy metric space
(Y, N), continuous at xy. If M is principal then f is t-continuous at xg.

If (X, d) is a metric space then the standard fuzzy metric My is principal [17] so we
have the next corollary.

A mapping f from the fuzzy metric space (X, My) to a fuzzy metric space (Y, N) is
continuous at xg if and only if f is t-continuous at xg.
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Strong fuzzy metrics (Morillas and Sapena, 2009)

If (M, A\) is a fuzzy metric on X then the triangular inequality (GV4) becomes for all
x,y,ze Xandt,s >0

M(x,z,t+ 8) > M(x,y,t) A M(y, z, 5)
Now if we demand also that

we obtain the notion of fuzzy ultrametric (non-Archimedean fuzzy metric [26]).
Then it suggests the following definition.

[18] Let (X, M, %) be a fuzzy metric space. The fuzzy metric M is said to be strong if it
satisfies foreach x,y,z € X andeacht > 0

v

Notice that this axiom (GV4’) cannot replace axiom (GV4) in the definition of fuzzy
metric since in that case M could not be a fuzzy metric on X.

It is possible to define a strong fuzzy metric by replacing (GV4) by (GV4’) and
demanding in (GV5) that the function My , be an increasing continuous function on t,
for each x, y € X. (Indeed, in such a case we have that

M(x,z,t+8) > M(x,y,t+8) * M(y,z,t + 8) > M(x,y, 1) * M(y, 2, 5)).
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Strong fuzzy metrics (Morillas and Sapena, 2009)

(a) Stationary fuzzy metrics are strong.
(b) Fuzzy ultrametrics are strong.

min{x, y} +t
max{x,y} +t

(c) The fuzzy metric (M, -) on R™ defined by M(x, y,t) = is strong.

In the next examples d is a metric on X.
(d) Lety : RT —]0, 1] be an increasing continuous function. Define the function M
on X? x Rt by
(1)
p(t) +d(x, y)
Then (M, -) is strong. In particular, the well-known standard fuzzy metric My is
strong for the usual product.

M(x,y,t) =

. dx.y)
(e) The function M on X? x Rt given by M(x, y,t) = e~ = is strong for the usual

product.

(f) The standard fuzzy metric My is a fuzzy ultrametric (and so it is strong for the
t-norm minimum) if and only if d is an ultrametric [26].

(9) Ifd is a metric which is not ultrametric then (My, N\) is a non-strong fuzzy metric
on X.

v
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Strong fuzzy metrics (Morillas and Sapena, 2009)

Next results can be seen in [18]. Let (M, x) be a non-stationary strong fuzzy metric.
We define the family of functions {M; : t € Rt} where M; : X? —]0, 1] is given by
M:(x,y) = M(x, y, t). With this notation we have the following proposition.

Let (M, x) be a non-stationary fuzzy metric on X. Then:

() (M, %) is strong if and only if (M, ) is a stationary fuzzy metric on X for each
te R,

(i) If(M,x) is strong then tpy = \/{p, : t € R }.
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Strong fuzzy metrics (Morillas and Sapena, 2009)

If M is a strong fuzzy metric we will say that {M; : t € R} is the family of stationary
fuzzy metrics deduced from M.

(a) Letd be a metric on X. Then (My,, \) is a stationary fuzzy metric on X for each
t > 0 ifand only if (Mg, N\) is strong if and only if d is an ultrametric on X.

(b) Consider the strong fuzzy metric M of Example 12.2 (c). Then,

min{x,y} +t

M —
t(Xa.y) maX{X,y}+t

Is a stationary fuzzy metric for each t > 0 and it is easy to verify that Ty, = Ty for
eacht > 0.

v
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Strong fuzzy metrics (Morillas and Sapena, 2009)

(c) Consider the function M on R™ x R™ x R™ given by

1 X=Yy
M(x,y,t){ mi”{x’y}.w(t) X#£Yy

max{x, y}

t 0<t<A
Wherego(t):{ ’ F>1

It is easy to verify that (M, -) is a strong fuzzy metric on R™ and t, is the discrete

topology on R .

Fort > 1 we have that M;(x,y) = minix, y} and Ty, is the usual topology of R
max{x, y}

relative to R .

Fort < 1 we have that M;(x,y) = minix, y} - t and so Ty, Is the discrete
max{x, y}

topology.
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Strong fuzzy metrics (Morillas and Sapena, 2009)

Now it arises the natural question of when a family (M, x) of stationary fuzzy metrics
on X for t € R, defines a fuzzy metric (M, ) on X by means of the formula
M(x,y,t) = My(x, y) for each x,y € X, t € R™. The next proposition answers this
question.

Let {(M;, %) : t € RT} be a family of stationary fuzzy metrics on X.

(i) The function M on X? x R defined by M(x,y,t) = M(x, y) is a fuzzy metric on
X when considering the t-norm x, if and only if {M; : t € R} is an increasing
family (i.e. My < My ift < t') and the function My, : RT™ — R* defined by
My (t) = M:(x, y) is a continuous function, for each x,y € X.

(i) If conditions of (i) are fulfilled then (M, x) is strong and {(M;, ) : t € Rt} is the
family of stationary fuzzy metrics deduced from M.

By (ii) we can notice that a strong fuzzy metric is characterized by its family
{M; : t € R*} of stationary fuzzy metrics.
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Strong fuzzy metrics (Morillas and Sapena, 2009)

An easy consequence of the previous definitions is the next proposition.

Let {M; : t € R*} be the family of stationary fuzzy metrics deduced from the strong

fuzzy metric M on X. Then the sequence {xn} in X is M-Cauchy if and only if {xn} is
M;-Cauchy for each t > 0.

Let (X, M, x) be a strong fuzzy metric space. (X, M, x) is complete if and only if
(X, My, x) is complete foreacht € R.
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Other fuzzy metric topics

@ Ascoli-Arzela theorem for fuzzy metric spaces (George and Veeramni, 1995)

@ Uniform continuity and contractivity (Gregori and Sapena, 2001)

@ Fixed point theorems (Gregori, Sapena, 2001)

@ Fixed point theorem in Kramosil and Michalek’s fuzzy metric spaces which
are complete in Grabiec’s sense (Gregori and Sapena, 2001)

@ The construction of the Hausdorff metric on /Cy(X) (J. Rodriguez-Lopez, S.

Romaguera, 2004)
@ Fuzzy quasi-metric spaces (Gregori and Romaguera, 2004)

@ On bicompletion of fuzzy quasi-metric spaces (Gregori, Romaguera and
Sapena, 2004)

@ The Doitchinov completion of fuzzy quasi-metric spaces (Gregori,
Mascarell and Sapena, 2005)

@ Intuitionistic fuzzy metric spaces (JH. Park, 2004) (Gregori, Romaguera,
Veeramani, 2006)

@ Application of fuzzy metrics to color image filtering (Morillas, Gregori,
Peris-Fajarnés and Latorre, 2005

V. Gregori Some results in fuzzy metric spaces




References

[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-
96.

2] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets

and Systems 88 (1997), 81-89.

3] A. George, P.V. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets

and Systems 64 (1994), 395-399.

[4] A. George, P.V. Veeramani, Some theorems in fuzzy metric spaces, J. Fuzzy

Math. 3 (1995), 933-940.

5] A. George, P.V. Veeramani, On some results of analysis for fuzzy metric spaces,
Fuzzy Sets and Systems 90 (1997), 365-368.

6] M. Grabiec, Fired points in fuzzy metric spaces, Fuzzy Sets and Systems 27

(1980), 385-380.

7] V. Gregori, A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy
Sets and Systems 125 (2002), 245-252 .

.
'

18] V. Gregori, S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets

and Systems 115 (2000), 485-489.

V. Gregori Some results in fuzzy metric spaces




References

9] V. Gregori, S. Romaguera, On completion of fuzzy metric spaces, Fuzzy Sets

and Systems 130 (2002), 399-404.

[10] V. Gregori, S. Romaguera, Characterizing completable fuzzy metric spaces,

Fuzzy Sets and Systems. 144 (2004), 411-420.

r-F'

[11] V. Gregori, S. Romaguera, Fuzzy quasi-metric spaces, Appl. Gen. Topology 5

(1) (2004), 129-136. "

[12] V. Gregori, S. Romaguera, A. Sapena, A characterization of bicompletable fuzzy
quasi-metric spaces, Fuzzy Sets and Systems 152 (2005), 395-402.

[13] V. Gregori, S. Romaguera, A. Sapena, Uniform continuity in fuzzy metric

spaces, Rend. Ist. Mat. Univ. Trieste 32 Suppl. 2 (2001), 81-88.

[14] V. Gregori, S. Romaguera, A. Sapena, On t-uniformly continuous mappings in
fuzzy metric spaces, The journal of Fuzzy Mathematics 12 1 237-243 2004.

[15] V. Gregori, JA. Mascarell, A. Sapena, On completion of fuzzy quasi-metric
spaces, Topology and its Applications 153 (2005), 883-899.

[16] V. Gregori, S. Romaguera, P. Veeramani, A note on intuitionistic fuzzy metric
spaces, Chaos, Solitons and Fractals 28 (2006), 902-905.

V. Gregori Some results in fuzzy metric spaces




References

[17] V. Gregori, A. Lopez-Crevillén, S. Morillas, A. Sapena, On convergence in fuzzy
metric spaces, Topology and its applications 156 (2009), 3002-3006.

[18] V. Gregori, S. Morillas; A. Sapena, On a class of completable fuzzy metrics,
submitted.

[19] V. Gregori, S. Morillas; A. Lépez-Crevillén, On continuity and uniform conti-
nuity in fuzzy metric spaces, Proceedings of the Workshop in Applied Topology

WIAT 09, 85-91.

120] 1. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kyber-

netika 11 (1975), 326-334.
21] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci., U.S.A. 28 (1942), 535-537.

22] D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and
Systems 158 (2007), 915-921.

23] S. Morillas, V. Gregori, G. Peris-Fajarnés, P. Latorre, A fast impulsive noise
color image filter using fuzzy metrics, Real-Time Imaging 11 (5-6) (2005),

417-428.

24] JH. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals 144

(2004), 1039-1046.

V. Gregori Some results in fuzzy metric spaces




References

125] J. Rodriguez-Loépez, S. Romaguera The Hausdorff fuzzy metric on compact sets,
Fuzzy Sets and Systems 147 (2) (2004), 273-283.

[26] A. Sapena, A contribution to the study of fuzzy metric spaces, Appl. Gen. Topol-
ogy 2 (2001), 63-76.

127] A. Sapena, S. Morillas On strong fuzzy metrics, Proceedings of the Workshop

in Applied Topology WIAT 09, 135-141.

28] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960),
314-334.

[29] H. Sherwood, On the completion of probabilistic metric spaces, Z.Wahrschein-
lichkeitstheorie verw. Geb. 6 (1966), 62-64.

[30] H. Sherwood, Complete Probabilistic Metric Spaces, Z. Wahrschein- lichkeits-
theorie verw. Geb. 20 (1971), 117-128.

[31] R. Vasuki, P. Veeramani, Fired point theorems and Cauchy sequences in fuzzy
metric spaces, Fuzzy Sets and Systems 135 (2003), 415-417.

[32] P. Veeramani, Best approrimation in fuzzy metric spaces, J. Fuzzy Math. 9

(2001), 75-80.
[33] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.

V. Gregori Some results in fuzzy metric spaces




