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1. Elementary concepts on exterior spaces and dynamical systems

1.1. Proper maps and exterior spaces

A continuous map f : X → Y between topological spaces is said to be
proper if for every closed compact subset K of Y , f−1(K) is a compact
subset of X . The category of topological spaces and continuous maps and
the subcategory of topological spaces and proper maps will be denoted by
Top and P, respectively. This last category and its corresponding proper
homotopy category are very useful for the study of non compact spaces.
Nevertheless, one has the problem that P does not have enough limits and
colimits and then we can not develop the usual homotopy constructions like
loops, homotopy limits and colimits, et cetera.
An answer to this problem is given by the notion of exterior space. The new
category of exterior spaces and exterior maps is complete and cocomplete
and contains as a full subcategory the category of spaces and proper maps.

Definition 1 Let (X, t) be a topological space, where X is the subja-
cent set and t its topology. An externology on (X, t) is a non empty
collection ε of open subsets which is closed under finite intersections
and such that if E ∈ ε , U ∈ t and E ⊂ U then U ∈ ε. If an open
subset is a member of ε is said to be an exterior open subset.
An exterior space (X, ε, t) consists of a space (X, t) together with an
externology ε.
A map f : (X, ε, t)→ (X ′, ε′, t′) is said to be an exterior map if it is
continuous and f−1(E) ∈ ε, for all E ∈ ε′.
An important externology is the family εc(X) of the complements of closed-
compact subsets of X , that will be called the cocompact externology.
The new category of exterior spaces and exterior maps, E, is complete and
cocomplete and contains P as a full subcategory via the full embedding

(·)c : P ↪→ E .

The functor (·)c carries a topological space X to the exterior space Xc

which is provided with the topology of X and the externology εc(X).
We also consider the functor

(·)×̄(·): E×Top→ E

given by the following construction:
Let (X, εX , tX) be an exterior space, (Y, tY ) a topological space and for
y ∈ Y we denote by (tY )y the family of open neighborhoods of Y at y.
We consider on X × Y the product topology tX×Y and the externology

εX×̄Y given by those E ∈ tX×Y such that for each y ∈ Y there exists

Uy ∈ (tY )y and T y ∈ εX such that T y × Uy ⊂ E. This exterior space will
be denoted by X×̄Y in order to avoid a possible confusion with the product
externology.

1.2. Dynamical Systems and Ω-Limits

Next we recall some basic notions about dynamical systems.

Definition 2 A dynamical system (or flow) on a topological space
X is a continuous map ϕ: R×X → X such that
(i) ϕ(0, p) = p, ∀p ∈ X
(ii) ϕ(t, ϕ(s, p)) = ϕ(t + s, p), ∀p ∈ X, ∀t, s ∈ R . A flow on X will
be denoted by (X,ϕ) and when no confusion be possible, we use X and
t · x = ϕ(t, x) for short.
Given two flows (X,φ), (Y, ψ), a flow morphism f : (X,φ) → (Y, ψ)
is a continuous map f :X → Y such that f (r · p) = r · f (p) for every
r ∈ R and for every p ∈ X.
A subset S of a flow X is said to be invariant if for every p ∈ S and
every t ∈ R, t · p ∈ S.

We denote by F the category of flows and flows morphisms.

Definition 3 Let X be a flow. The ωr-limit set of a point p ∈ X is
given by

ωr(p) = {q ∈ X|∃tn→ +∞ such that tn · p→ q}

and the Ωr-limit of X by

Ωr(X) =
⋃
p∈X

ωr(p).

Definition 4 Let X be a flow and x a point of X.

(i) x is a critical point (or a rest point, or an equilibrium point) if for
every r ∈ R , r · x = x,

(ii) x is a periodic point if there is r ∈ R, r 6= 0, such that r · x = x,

(iii) x is r-Poison stable if there is a divergent sequence tn→ +∞ such
that tn · x→ x.

We denote by C(X), P (X), P r(X) the invariant subsets of critical, periodic
and r-Poison stable points of X , respectively. Then,

C(X) ⊂ P (X) ⊂ P r(X) ⊂ Ωr(X) .

The notions above can be dualized to obtain the notion of the ωl-limit set
of a point p, the Ωl- limit of X and l-Poison stable points.

2. End and Limit space functors for the category of exterior spaces

For a topological space Y , π0(Y ) denotes the set of path-components of
Y and we have a continuous canonical map Y → π0(Y ) which induces a
quotient topology on π0(Y ) .

Definition 5 Given an exterior space X = (X, ε(X)), the topological
subspace:

L(X) = ĺım ε(X) = ∩E∈ε(X)E

will be called the limit space of X .
The end space of X is the inverse limit:

π̌0(X) = ĺım π0ε(X) = ĺım
E∈ε(X)

π0(E)

provided with the inverse limit topology of the spaces π0(E) .

Note that an end point a ∈ π̌0(X) is represented by the filter base:

{UEa |UEa is a path-component of E,E ∈ ε(X)} .

On the other hand, when X is locally path-connected, then we have that
π̌0(X) is a prodiscrete space.

Given an exterior space X = (X, ε(X)) one has a canonical continuous map

e:L(X)→ π̌0(X).

This permits to decompose the limit of an exterior space:

Definition 6 Given an exterior space X, an end point a ∈ π̌0(X) is
said to be representable by b ∈ L(X) if e(b) = a . Notice that the map
e:L(X)→ π̌0(X) induce an e-decomposition

L(X) =
⊔

a∈π̌0(X)

La(X)

where La(X) = e−1(a) will be called the a-component of the limit
L(X) .

Concerning this e-decomposition of the limit there are some interesting ques-
tions that have to be studied; for instance, under which conditions one has
that L(X) or La(X) are compact spaces. It will also be interesting to analyze
the exterior spaces whose limit components La(X) are continua.
If X, Y are exterior spaces and f :X → Y is an exterior map, then f indu-
ces continuous maps L(f ):L(X) → L(Y ), π̌0(f ): π̌0(X) → π̌0(Y ) and we

have the functors:
L, π̌0: E→ Top.

It is not difficult to check that L preserves exterior homotopies and π̌0 is
invariant by exterior homotopy:

Lemma 1 Suppose that X, Y be exterior spaces and f, g:X → Y are
exterior maps.

(i) If H :X×̄I → Y is an exterior homotopy from f to g, then L(H) =
H|L(X)×I :L(X×̄I) = L(X)× I → L(Y ) is a homotopy from L(f ) to

L(g) .

(ii) If H :X×̄I → Y is an exterior homotopy from f to g, then π̌0(f ) =
π̌0(g) .

Then, if πE and πTop are the exterior homotopy category and the usual
homotopy category corresponding to E and Top respectively, one has the
following result.

Proposition 1 The functors L: E → Top, π̌0: E → Top induce fun-
ctors

L: πE→ πTop , π̌0: πE→ Top .

3. Exterior Flows. End and Limit spaces of a dynamical system via exterior spaces

We consider the following externology on R:

r = {U |U is open and there is n ∈ N such that [n,+∞) ⊂ U}

and we denote the corresponding exterior space by Rr . Note that a base
for r is given by

B(r) = {[n,+∞)|n ∈ N} .
We propose the following notion that mixes the structures of dynamical
system and exterior space:

Definition 7 Let M be an exterior space, Mt the subjacent topolo-
gical space and Md the set M provided with the discrete topology.
An r-exterior flow is a continuous flow φ: R×Mt → Mt such that
φ: Rr×̄Md → M is exterior and for any s ∈ R, φs:M → M is also
exterior.
An r-exterior flow morphism of r-exterior flows f :M → N is a
flow morphism such that f is exterior.

Denote by ErF the category of r-exterior flows and r-exterior flow morp-
hisms.

We have defined above the end and limit space of an exterior space. In par-
ticular, since an r-exterior flow X is an exterior space, we can consider the
end space π̌0(X) and the limit space L(X) . Then we have:

Proposition 2 Suppose that (X,φ) is an r-exterior flow. Then,

(i) the space L(X) is invariant,

(ii) there is a trivial induced flow on π̌0(X).

We note that for an r-exterior flow X , each trajectory has an end point
given as follows:
If p ∈ X and E ∈ ε(X), there is T p ∈ r such that T p · p ⊂ E . We can
suppose that T p is path-connected, then T p · p is path-connected and there
is a unique ωr(p, E) path-component of E such that T p ·p ⊂ ωr(p, E) ⊂ E.
This gives maps ωr(·, E):X → π0(E) and ωr:X → π̌0(X) such that the
following diagram commutes:

L(X)
e
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��

X ωr
// π̌0(X)

The map ωr permits to divide an r-exterior flow in simpler r-exterior flows:

Definition 8 Let X be an r-exterior flow. The invariant space denoted
by

X(r,a) = ω−1
r (a), a ∈ π̌0(X)

will be called the r-basin at a.
The induced partition of X in simpler r-exterior flows:

X =
⊔

a∈π̌0(X)

X(r,a)

will be called the ωr-decomposition of the r-exterior flow X.

Given an r-exterior flow (M,φ) ∈ ErF, one also have a flow (Mt, φ) ∈ F .
This gives a forgetful functor

(·)t: ErF→ F .

Now given a flow (X,ϕ), an open N ∈ tX is said to be r-exterior (or ab-
sorbing open) if for any x ∈ X there is Tx ∈ r such that ϕ(Tx×{x}) ⊂ N .
It is easy to check that the family of r-exterior subsets of X is an externo-
logy, that will be denoted by εr(X), which gives an exterior space Xr and
ϕ: Rr×̄Xd → Xr is an r-exterior flow. The pair (Xr, ϕ) is said to be the
r-exterior flow associated to X . When there is no possibility of confusion,
(Xr, ϕ) will be briefly denoted by Xr. Then we have a functor

(·)r: F→ ErF.

The forgetful functor and the given construction of exterior flows are related
as follows:

Proposition 3 The functor (·)r: F→ ErF is left adjoint to the functor
(·)t: ErF → F . Moreover (·)t (·)r = id and F can be considered as a
full subcategory of ErF via (·)r.

Definition 9 Given a flow X, the space π̌r
0(X) = π̌0(Xr) is said to be

the end space of the flow X and the space Lr(X) = L(Xr) is said
to be the limit space of the flow X .

We remark that if X is a flow their associated r-exterior structure permits
to decompose X using the decomposition of Xr . The ωr-decomposition

Xr =
⊔

a∈π̌r
0(X)

Xr
(r,a)

can be considered as generalization for a continuous flow of a disjoint union
of “stable”submanifolds of a differentiable flow . On the other side, the abo-
ve decomposition generalizes Morse-Smale’s decompositions of dynamical
system associated to Morse functions .
It is interesting to note that the ωr-decomposition of X is compatible with
the e-decomposition of the limit subspace L(X) .
The relation of the limit space of a flow or an r-exterior flow and the subflow
of periodic points is analysed in the following results:

Lemma 2 Let X be an r-exterior flow and suppose that x ∈ X . If x
is a periodic point, then for every E ∈ ε(X), x ∈ E .

Proposition 4 Let X be an r-exterior flow. Then, P (X) ⊂ L(X) .

Lemma 3 Let X be a flow and suppose that X is a T1-space. Then, for
every x ∈ X the following statements are equivalent:

(i) x is a non-periodic point,

(ii)X \ {x} is an r-exterior subset of X.

Theorem 1 Let X be a flow and suppose that X is a T1-space. Then,
Lr(X) = P (X) the set of periodic points of X .

Taking into account the result above, if X is flow and X is T1 we have that

Lr(X) = P (X) ⊂ P r(X) ⊂ Ωr(X) ⊂ X .

With respect to decompositions, it will be interesting to find topological
and dynamical conditions to ensure that the ωr-decomposition of a flow X
divides Ωr(X) without dividing ωr(x) for each x ∈ X .

We note that if we take on R the externology

l = {U |U is open and there is n ∈ N such that (−∞,−n] ⊂ U}

or we take the reversed flow, we have the notion of l-exterior flow and we
obtain the corresponding dual results.
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