"GREEN" SOLVENTS AS AN ALTERNATIVE FOR BIOACTIVE AND HIGH ADDED-VALUE COMPOUNDS ISOLATION FROM CHRYSOCHROMULINA ROTALIS

M.A. González-Cardoso^{1,2}, M.C. Cerón-García^{1,2}, A. Macías-de la Rosa¹, A. Sánchez-Mirón^{1,2}, S. Seoane³, F. García-Camacho^{1,2} and E. Molina-Grima^{1,2}

IX SIMPOSIO de Investigación EN CIENCIAS EXPERIMENTALES

¹Department of Chemical Engineering, University of Almería, Almería 04120 (Spain)

²Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería

³Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU) Bilbao 48080 (Spain)

<u>mgc459@ual.es</u>

1. Introduction

Many bioactive and high added-value compounds from microalgae are of industrial and economic interest, due to their numerous applications in the food, cosmetic, or pharmaceutical industries. Traditional extraction methods for these compounds from microalgae typically involve the use of organic solvents that are often harmful to the health of workers and/or the environment. Such solvents as hexane, toluene, dichloromethane (DCM) and n-butanol, are frequently used for sequential gradient partition of microalgae biomass, in order to isolate bioactive compounds contained in it¹. The search for new extraction methods or the improvement of current processes could help to find more sustainable and environmentally friendly processes, and, in this regard, "green" solvents are a little-explored source of viable alternatives that could solve this problem².

3. Materials and methods

Biomass: Chrysochromulina rotalis

GREEN SOLVENT ASSAYS

SOLUBILITY TEST

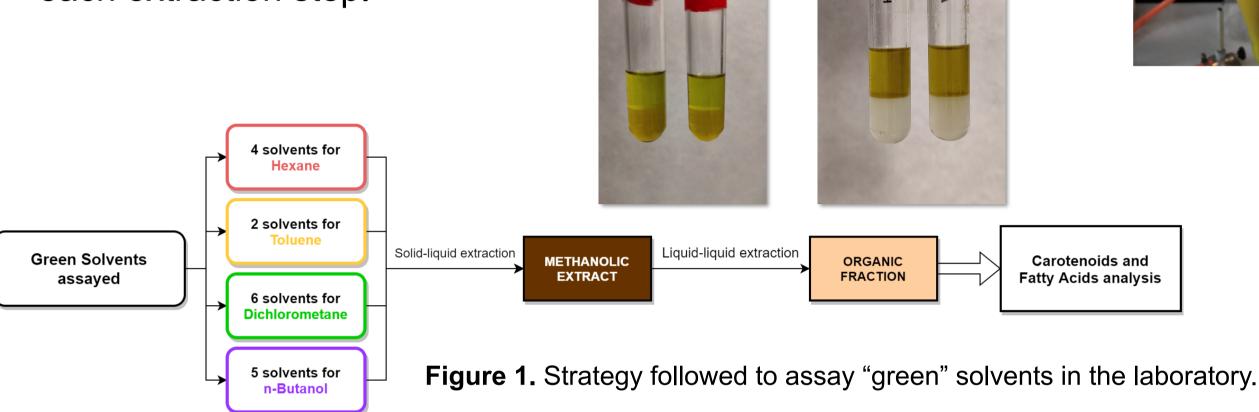
♦ 1:1 v/v solvent mix with different MeOH/H₂O mixtures.

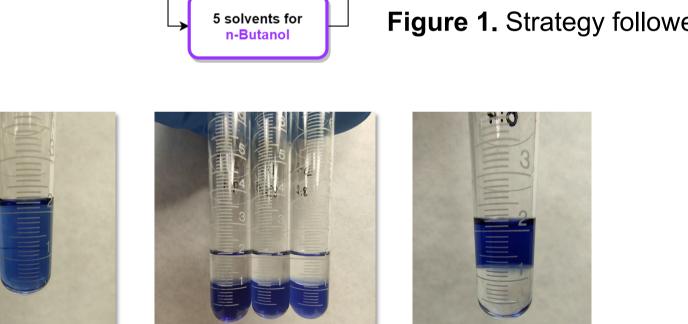
SOLID-LIQUID EXTRACTION

♦ 10 mg biomass extraction with MeOH (40°C, 2 min).

LIQUID-LIQUID EXTRACTION

♦ Methanolic extract partition with organic solvent and proper MeOH/H₂O mixture (previously determined).


ORGANIC EXTRACT VALORIZATION

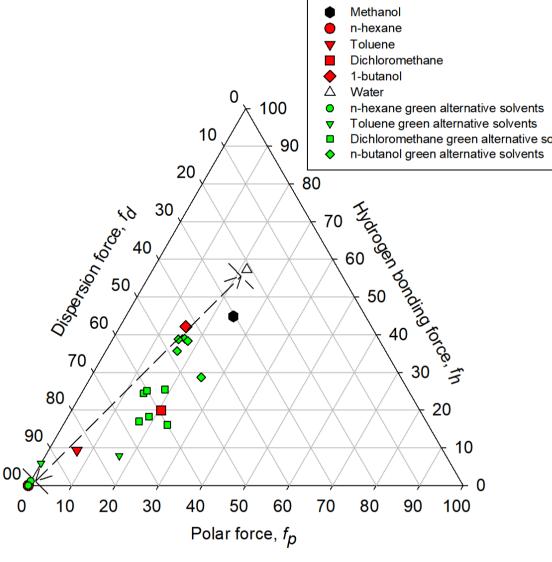

- ♦ Photodiode-array HPLC Carotenoids analysis³.
- ♦ Fatty acids determination by GC-FID⁴.

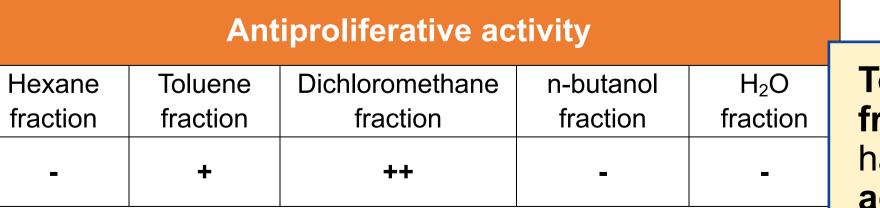
SEQUENTIAL GRADIENT PARTITION

- ⇒ Double solid-liquid extraction with methanol (40°C, 30 min).
- ⇒ Multiple liquid-liquid extraction steps with polarity gradient organic solvents (hexane, toluene, DCM and n-butanol) in different MeOH/H₂O mixtures (9:1, 7:3, 6:4 and 0:10, respectively)¹.

⇒ Antiproliferative activity assays with extracts from each extraction step.

4. Results and discussion




Figure 3. Ternary diagram for Hansen's solubility parameters, representing classical solvents (black, white and red symbols) and proposed solvents (green symbols).

For liquid-liquid extraction experiments, only MeOH/H₂O mixtures with **total inmiscibility** (marked as '++' in Table 1) for each solvent were selected.

Table 1. Solubility assays for each green solvent proposed in this work (++, totally inmiscible; +, partially miscible; -, miscible).

Solvent to replace	Proposed Green solvents	MeOH/H ₂ O mixture	Inmiscibility
Hexane	Cyclohexane	9:1	++
	Heptane	9:1	++
	Isooctane	9:1	++
	Pentane	9:1	++
Toluene	Chlorobenzene	7:3	++
	Methylcyclohexane	7:3	++
DCM	t-amyl methyl ether	6:4	++
	n-butyl acetate	6:4	++
	Cyclopentyl methyl ether	6:4	++
	Ethyl acetate	6:4	-
		5:5	_
		4.5:5.5	_
		4:6	++
	Isobutyl acetate	6:4	+
		5.5:4.5	++
		5:5	+
	Methylisobuthyl ketone	6:4	-
		5:5	+
		4.5:5.5	++
n-butanol	t-amyl alcohol	0:10	++
	Benzyl alcohol	0:10	++
	Dimethyl carbonate	0:10	++
	Isoamyl alcohol	0:10	++
	1-pentanol	0:10	++

Figure 5. Total Carotenoids and Fatty Acids extracted as a function of the solubility parameter δ_T, related with solvent polarity.

Table 2. Antiproliferative activity found from the different sequential

gradient partition fractions (++, high activity; +, little activity; -, no

Toluene and DCM fractions were shown to have antiproliferative activity against different tumor cell lines, being higher for the DCM fraction.

ility
rity.

Total Carotenoids
Total Fatty Acids

Total Fatty Acids

Total Carotenoids
Total Fatty Acids

Solubility parameter, $\delta_{\rm T}$

2. Objective

The main objective of this work is to propose an alternative sequential gradient partition method through the use of "green" solvents instead of other classical and hazardous solvents, and which in turn allows obtaining similar bioactive and high added-value compounds extraction yields from microalgae biomass.

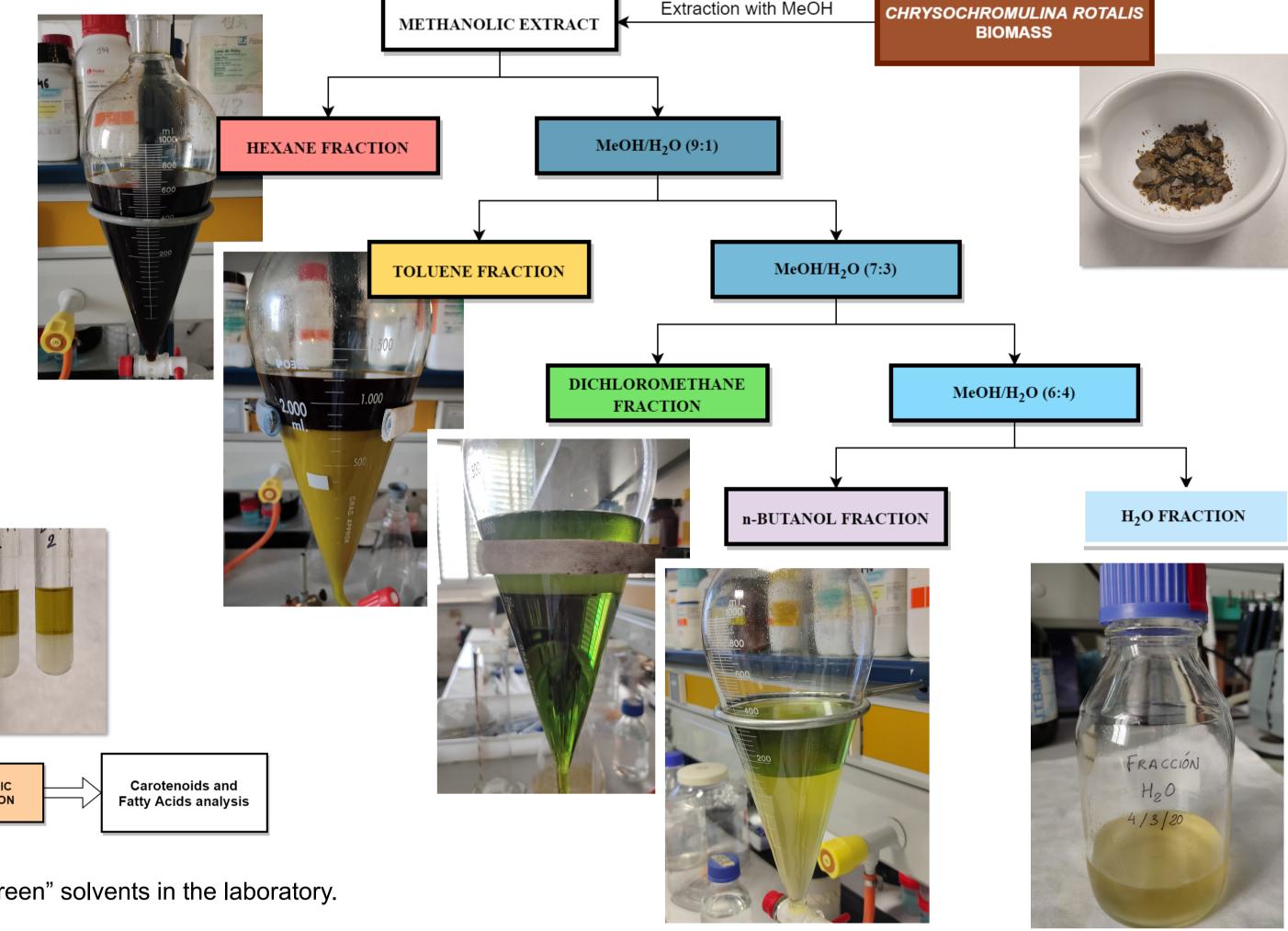
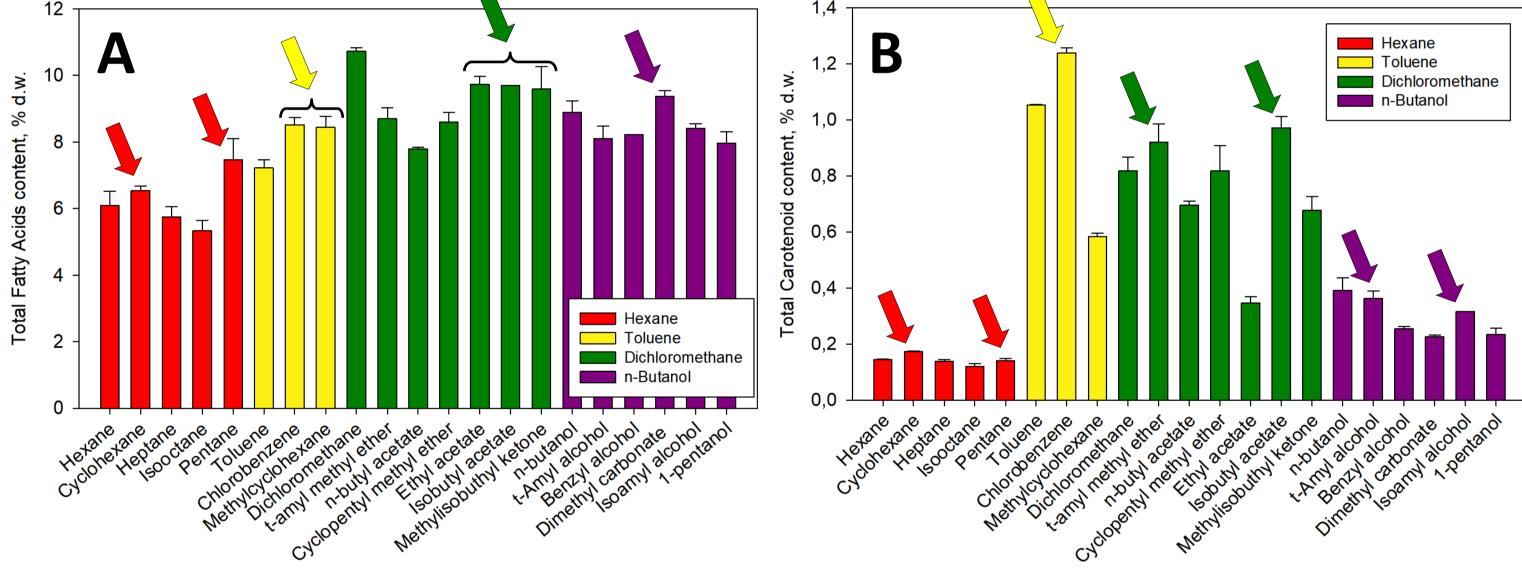



Figure 2. Diagram and pictures of the sequential liquid-liquid extraction process with polarity gradient used as control experiment for bioactive and high added-value compounds recovery

Figure 4. Total Fatty Acids (A) and Carotenoids (B) content determined from each green solvent extract (hexane, toluene, DCM and n-butanol as control, followed by its respective alternative assayed solvents). With arrows those solvents that extracted the highest amount of fatty acids and carotenoids, or an amount similar to that extracted by the control, have been marked.

In order to propose an alternative sequential gradient partition, only one green solvent was selected for each liquid-liquid extraction step. Thus, the selection criterion followed was the one extracting the most total amount of compounds from the methanolic extract. Also, other criteria such as green score or additional operational costs derived from the use of these solvents were taken into account. Finally, the solvents selected were cyclohexane as a substitute for hexane, chlorobenzene instead of toluene, isobutyl acetate for DCM, and isoamyl alcohol, for replacing n-butanol.

5. Conclusions

- Seventeen "green" solvents have been assayed for fatty acids and carotenoids extraction performance, against control solvents. At least five of them showed higher fatty acids content extracted than in the control, and another five solvents did the same for carotenoids content.
- ♦ A sustainable and more **environmentally friendly** method for bioactive and high added-value compounds isolation is proposed.
- Sequential polarity gradient fractionation showed potential to isolate bioactive compounds, mainly in the DCM fraction and, to a lesser extent, in toluene.

6. References

activity).

¹R. Riguera, Journal of Marine Biotechnology, 1997, 5(4), 187-193.

²C.M. Alder, J.D. Hayler, R.K. Henderson, A.M. Redman, L. Shukla, L.E. Shuster, H.F. Sneddon, *Green Chemistry*, 2016, 18(13), 3879–3890.

M.C.Cerón-García, C.V. González-López, J. Camacho-Rodríguez, L. López-Rosales, F. García-Camacho, E. Molina-Grima, Food Chemistry, 2018, 257, 316–324.

⁴ J. Rodriguez-Ruiz, E-H. Belarbi, J.L.G. Sanchez, D.L. Alonso, *Biotechnology Techniques,* 1998, 12 (9), 689–691.

7. Acknowledgements

This research was funded by the Spanish Ministry of Economy and Competitiveness (grants RTC-2017-6405-1 and PID2019-109476RB-C22), General Secretariat of Universities, Research and Technology of Andalusian Government (grant: P18-RT-2477). We would also like to thank Dr. Fernando de la Calle, Head of the Microbiology Department at PharmaMar SA (Madrid, Spain), who carried out the antiproliferative activity assays. No conflicts of interest, informed consent, or human or animal rights are applicable to this study.

