

Presentación del paradigma de modelado Energy Hub

Background:

ENERPRO Project (DPI2014-56364-C2-1-R)

Energy Management Strategies in Production Environments with Support of Solar Energy

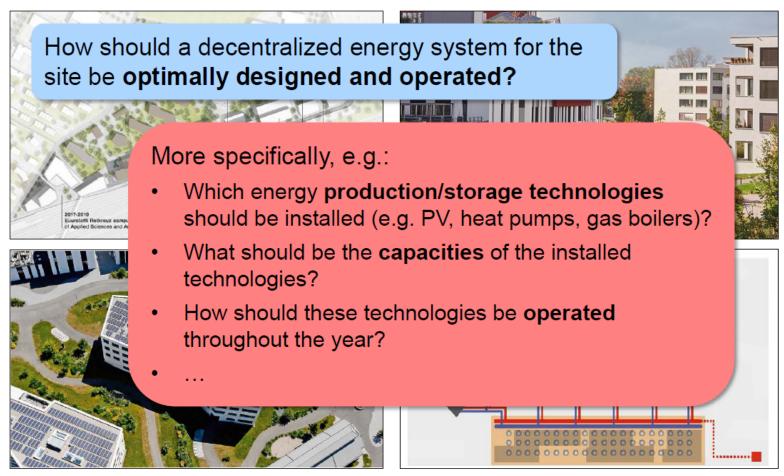
PhD student: Jerónimo

Ramos Teodoro

Advisor: Francisco Rodríguez Díaz Co-advisor: Manuel Berenguel Soria

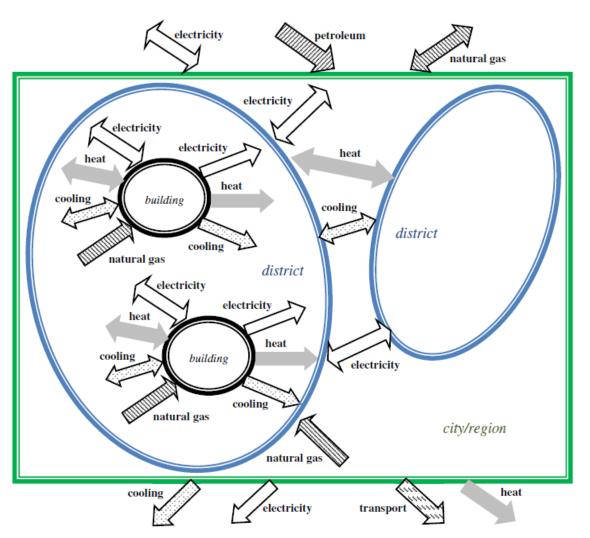
Content summary:

Motivation
Modelling an EH
Optimization results
Extending the model and
further applications


Motivation

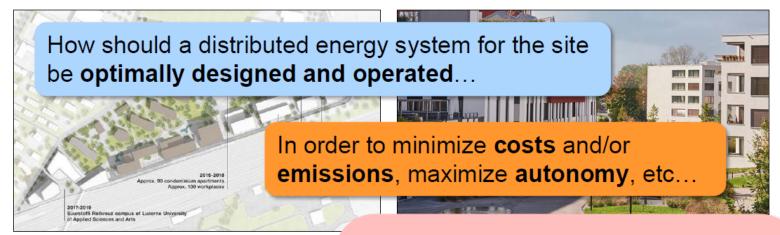
Problem

For a given urban area/district/community...



Suurstoffi Areal, Risch-Rotkreuz, Switzerland (image source: ZugEstates.ch, Suurstoffi.ch)

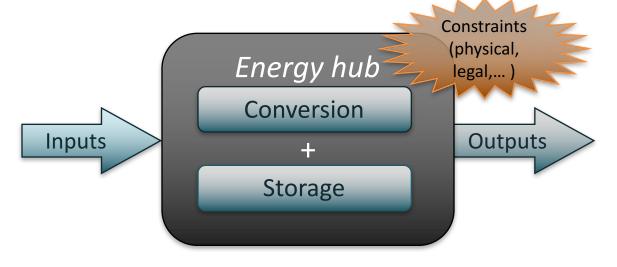
A multi-scale problem


- How can the interactions between these scales be coordinated to improve overall energy performance?
- Where should energy be produced/stored and in what quantities?
- How should transactions be coordinated?

Optimization

For a given **urban area/district/community**...

Given complexities such as:


- Time-varying resource availability
- Multi-energy demand patterns
- Technical & economic constraints
- Regulatory/policy environment
- Uncertainties regarding fuel prices, energy demand, policy, etc.
- Possibilities for electricity market participation

Suurstoffi Areal, Risch-Rotkreuz, Switzerland (image source: ZugEstates.ch, Suurstoffi.ch)

The energy hub concept

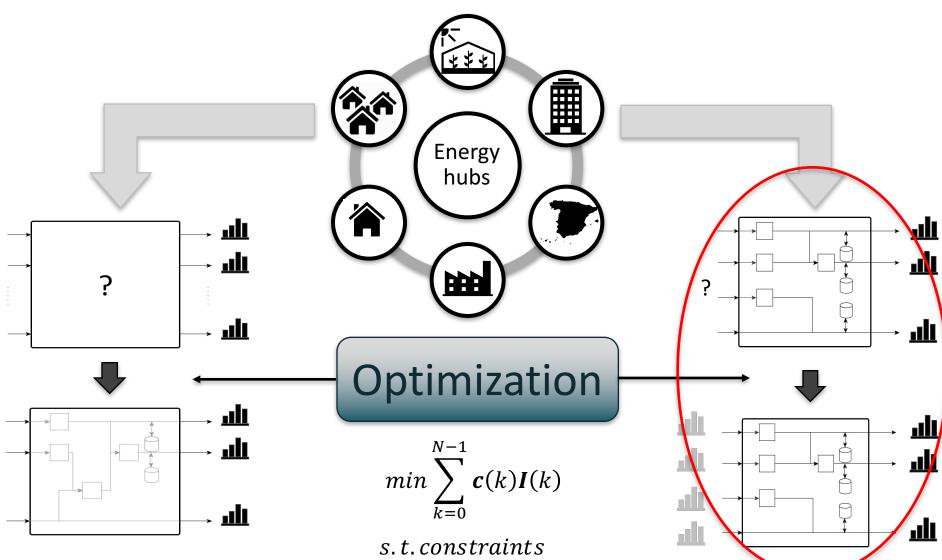
$$\boldsymbol{O}(k) = \boldsymbol{C}(k) \cdot \boldsymbol{I}(k) - \boldsymbol{Q}_{c}(k) + \boldsymbol{Q}_{d}(k)$$

$$S(k+1) = S(k) + P_c(k)Q_c(k) - P_d(k)Q_d(k) - L(k)S(k)$$

$$I^{\min}(k) \le I(k) \le I^{\max}(k)$$

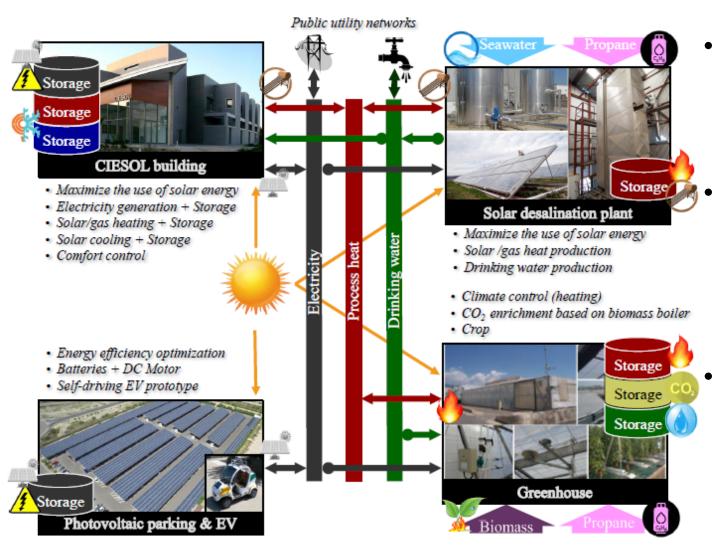
$$0 \leq S(k) \leq S^{max}(k)$$

$$0 \leq \boldsymbol{Q}_{c}(k) \leq \boldsymbol{Q}_{c}^{max}(k)$$


$$0 \leq \boldsymbol{Q_d}(k) \leq \boldsymbol{Q_d^{max}}(k)$$

- Wide applicability concept
- Systems including energy or material resources
- Usually simplified models for optimizartion (↓computational burden)
- Certain variables can be controlled, and others cannot

The energy hub concept



Modelling an EH

ENERPRO Plant

- Self-sustaining test-bed plant consisting of four sub-systems
 - Development of coordination, management and control strategies
- Available data of each facility between 2013 and 2017 on a minute basis

ENERPRO Plant

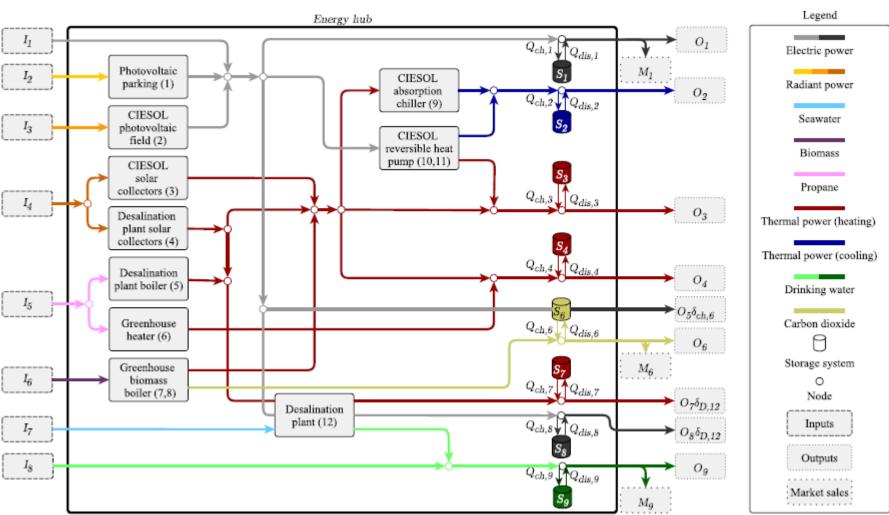
Reversible heat pump

Photovoltaic field A

ENERPRO Plant

- Desalination module ()
- Solar collectors field (a)
- Propane boiler 🔌

• Biomass boiler (a) (a)



Propane heater 🍑

Inputs: $i=1,\ldots,8$ Outputs: $o=1,\ldots,9$ Devices: $d=1,\ldots,12$ Paths: $p=1,\ldots,30$

Table 2: Input, output and market variables description

Variable Description Units Electricity from the public utility network kW I_1 Radiant power received from parking PV modules kW I_2 Radiant power received from CIESOL PV modules I_3 kW Radiant power received from solar collectors kW I_4 I_5 Propane for fossil fuel combustion systems kg/h Wood pellets for the biomass boiler $I_{\rm B}$ kg/h Seawater for the desalination plant m³/h I_7 Drinking water from the public utility network m³/h I_8 O_1 Electricity for CIESOL and the greenhouse kW Thermal power (cooling) for CIESOL O_2 kW Thermal power (heating) for CIESOL O_3 kW O_4 Thermal power (heating) for the greenhouse kW O_5 Electricity for the greenhouse CO2 pump kW O_6 Carbon dioxide for the greenhouse kg/h O_7 Thermal power (heating) for the desalination plant kW O_8 Electricity for the desalination plant kW m³/h Water for CIESOL and the greenhouse O_9 M_1 Electricity sold through the public utility network kW M_6 Carbon dioxide released from storage kg/h M_9 Water sold through the public utility network m^3/h

Table 3: Vector P Elements for each path in the real plant

P_p	Path*	P_p	Path*
P_1	$II \rightarrow OI$	P_2	$I1 \rightarrow D10 \rightarrow O2$
P_3	$I1 \rightarrow D11 \rightarrow O3$	P_4	$I1 \rightarrow O8$
P_5	$II \rightarrow O5$	P_6	$I2 \rightarrow D1 \rightarrow O1$
P_7	$\text{I2} \rightarrow \text{D1} \rightarrow \text{D10} \rightarrow \text{O2}$	P_8	$12 \rightarrow D1 \rightarrow D11 \rightarrow O3$
P_9	$12 \rightarrow D1 \rightarrow O8$	P_{10}	$12 \rightarrow D1 \rightarrow O5$
P_{11}	$I3 \rightarrow D2 \rightarrow O1$	P_{12}	$\text{I3} \rightarrow \text{D2} \rightarrow \text{D10} \rightarrow \text{O2}$
P_{13}	$\text{I3} \rightarrow \text{D2} \rightarrow \text{D11} \rightarrow \text{O3}$	P_{14}	$I3 \rightarrow D2 \rightarrow O8$
P_{15}	$13 \rightarrow D2 \rightarrow O5$	P_{16}	$\text{I4} \rightarrow \text{D3} \rightarrow \text{D9} \rightarrow \text{O2}$
P_{17}	$I4 \rightarrow D3 \rightarrow O3$	P_{18}	$I4 \rightarrow D3 \rightarrow O4$
P_{19}	$\text{I4} \rightarrow \text{D4} \rightarrow \text{D9} \rightarrow \text{O2}$	P_{20}	$\text{I4} \rightarrow \text{D4} \rightarrow \text{O3}$
P_{21}	$\rm I4 \rightarrow \rm D4 \rightarrow \rm O4$	P_{22}	$\rm I4 \rightarrow \rm D4 \rightarrow \rm O7$
P_{23}	$15 \rightarrow D5 \rightarrow O7$	P_{24}	$15 \rightarrow D6 \rightarrow O4$
P_{25}	$\text{I6} \rightarrow \text{D7} \rightarrow \text{D9} \rightarrow \text{O2}$	P_{26}	$16 \rightarrow D7 \rightarrow O3$
P_{27}	$I6 \rightarrow D7 \rightarrow O4$	P_{28}	$I6 \rightarrow D8 \rightarrow O6$
P_{29}	$17 \rightarrow D12 \rightarrow O9$	P_{30}	$I8 \rightarrow O9$

^{*}I: input, O: output, D: device.

Conversion model

$$\delta_{O}(k)O(k) + M(k) = C(k)P(k) - Q_{ch}(k) + Q_{dis}(k)$$

Storage model

$$S(k+1) = L(k)S(k) + C_{ch}(k)Q_{ch}(k) - C_{dis}(k)Q_{dis}(k)$$

Production limits: inputs, devices and sales

$$I_i^{min}(k)\delta_{I,i}(k) \le I_i(k) \le I_i^{max}(k)\delta_{I,i}(k),$$

$$I(k) = C_i P(k)$$

$$M_o^{min}(k)\delta_{M,o}(k) \le M_o(k) \le M_o^{max}(k)\delta_{M,o}(k),$$

$$D(k) = C_d(k)P(k)$$

$$D_d^{min}(k)\delta_{D,d}(k) \le D_d(k) \le D_d^{max}(k)\delta_{D,d}(k),$$

Storage limits

$$Q_{ch,o}^{min}(k)\delta_{ch,o}(k) \le Q_{ch,o}(k) \le Q_{ch,o}^{max}(k)\delta_{ch,o}(k),$$

$$Q_{dis,o}^{min}(k)\delta_{dis,o}(k) \le Q_{dis,o}(k) \le Q_{dis,o}^{max}(k)\delta_{dis,o}(k),$$

$$S_o^{min}(k) \le S_o(k) \le S_o^{max}(k),$$

Non-simultaneous processes

$$\delta_{ch,o}(k) + \delta_{dis,o}(k) \le 1$$

$$\delta_{I,1}(k) + \delta_{M,1}(k) \le 1$$

$$\delta_{I,8}(k) + \delta_{M,9}(k) \le 1$$

$$\delta_{D,10}(k) + \delta_{D,11}(k) \le 1$$

$$P_{25} + P_{26} + P_{27} = P_{28}$$

Table 5: Conversion, degradation, charge and discharge coefficients

Coeff.	Value	Coeff.	Value	Coeff.	Value	Coeff.	Value
$\eta_{D,5}$	11.54	$\eta_{l,1}$	0.02	$\eta_{ch,1}$	0.7	$\eta_{dis,1}$	0.8
$\eta_{D,6}$	11.54	$\eta_{l,2}$	0.06	$\eta_{ch,2}$	0.9	$\eta_{dis,2}$	0.9
$\eta_{D,7}$	4.25	$\eta_{l,3}$	0.06	$\eta_{ch,3}$	0.9	$\eta_{dis,3}$	0.9
$\eta_{D,8}$	1.76	$\eta_{l,4}$	0.06	$\eta_{ch,4}$	0.9	$\eta_{dis,4}$	0.9
$\eta_{D,9}$	0.7	$\eta_{l,5}$	0.02	$\eta_{ch,5}$	0.7	$\eta_{dis,5}$	0.8
$\eta_{D,10}$	2.9	$\eta_{l,6}$	0	$\eta_{ch,6}$	1	$\eta_{dis,6}$	1
$\eta_{D,11}$	3.1	$\eta_{l,7}$	0.06	$\eta_{ch,7}$	0.9	$\eta_{dis,7}$	0.9
$\eta_{D,12}$	0.32	$\eta_{l,8}$	0.02	$\eta_{ch,8}$	0.7	$\eta_{dis,8}$	0.8
-	-	$\eta_{l,9}$	0	$\eta_{ch,9}$	1	$\eta_{dis,9}$	1

Table 6: Local supply company tariff prices (p_E) [47]

Period	Price (€/kWh)	Winter (UTC+1)	Summer (UTC+2)
Pl	0.168899	18-22 h	11-15 h
P2	0.093162	8-18 h / 22-24 h	8-11 h/15-24 h
P3	0.073738	0-8 h	0-8 h

Table 7: Variable charges with the 3.0A access fee (ppv) [38]

Period	Price (€/kWh)	Winter (UTC+1)	Summer (UTC+2)
Pl	0.019894	18-22 h	11-15 h
P2	0.013147	8-18 h / 22-24 h	8-11 h/15-24 h
P3	0.008459	0-8 h	0-8 h

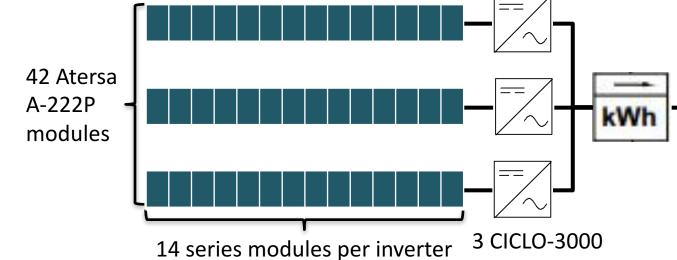
Table 4: Upper and lower limits for converters, storage capacity, charge and discharge flows

Variable	Min	Max	Variable	Min	Max
D_5	0 kg/h	20 kg/h	S_1	0 kWh	11 kWh
D_6	0 kg/h	6.8 kg/h	S_2	0 kWh	29 kWh
D_7	15 kg/h	40 kg/h	S_3	0 kWh	174.2 kWh
D_8	15 kg/h	40 kg/h	S_4	0 kWh	116.1 kWh
D_9	0 kW	100 kW	S_5	0 kWh	0 kWh
D_{10}	0 kW	26.5 kW	S_6	0 kg	25.2 kg
D_{11}	0 kW	26.5 kW	S_7	0 kWh	335.4 kWh
D_{12}	$7.5 \text{ m}^3/\text{h}$	$8.5 \text{ m}^3/\text{h}$	S_8	0 kWh	20 kWh
-	-	-	S_9	0 m^3	6 m^3
$Q_{ch,1}$	0 kW	3 kW	$Q_{dis,1}$	0 kW	3 kW
$Q_{ch,2}$	0 kW	20.9 kW	$Q_{dis,2}$	0 kW	20.9 kW
$Q_{ch,3}$	0 kW	125.4 kW	$Q_{dis,3}$	0 kW	125.4 kW
$Q_{ch,4}$	0 kW	104.5 kW	$Q_{dis,4}$	0 kW	104.5 kW
$Q_{ch,5}$	0 kW	0 kW	$Q_{dis,5}$	0 kW	0 kW
$Q_{ch,6}$	0 kg/h	51 kg/h	$Q_{dis,6}$	0 kg/h	51 kg/h
$Q_{ch,7}$	0 kW	250.8 kW	$Q_{dis,7}$	0 kW	250.8 kW
$Q_{ch,8}$	0 kW	3 kW	$Q_{dis,8}$	0 kW	3 kW
$Q_{ch,9}$	0 m ³ /h	3 m ³ /h	$Q_{dis,9}$	0 m ³ /h	3 m ³ /h

$$c(k) = \begin{bmatrix} c_1 & c_2 & c_3 & 0 & c_5 & c_6 & 0 & c_8 \end{bmatrix}$$

$$s(k) = [s_1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ s_9]$$

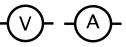
$$\eta_{SC} = \frac{Q_u}{G_T A_{c,T}} = \frac{\dot{m}_f}{\dot{m}_{eq}} \left(\frac{L_{eq} \beta_r}{A_{c,T}} - \frac{h_{SC} (T_{sc,m} - T_a)}{G_T A_{c,T}} \right)$$


PV facility model

Global performance of the field (η) Available radiation on sloped surface $(G_T \cdot A)$ =

Total PV array area

CIESOL PV field

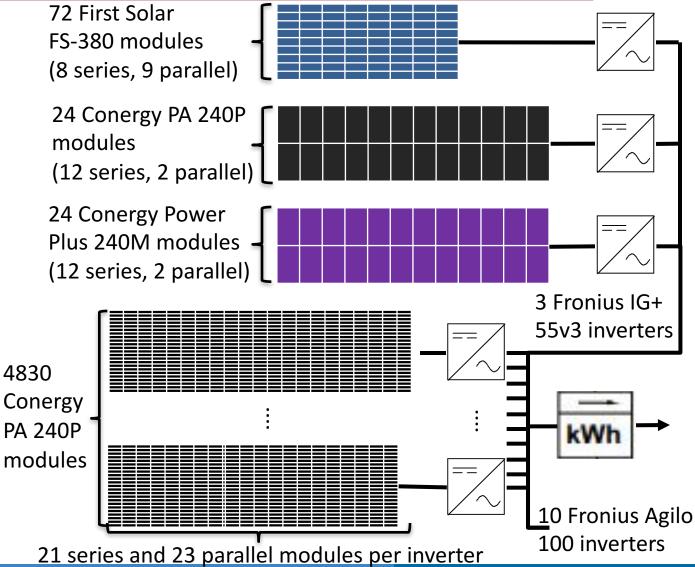

Measurements:

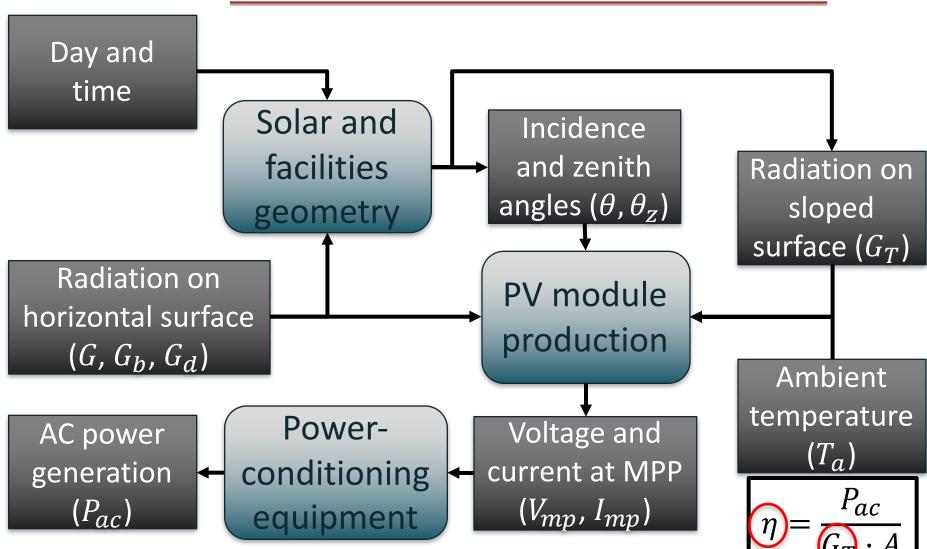
- Detailed inverters I/O

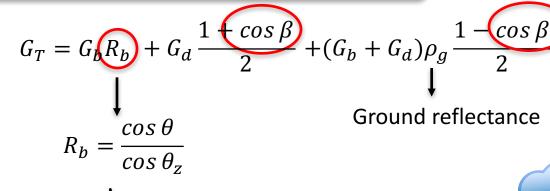
inverters

Parking PV field

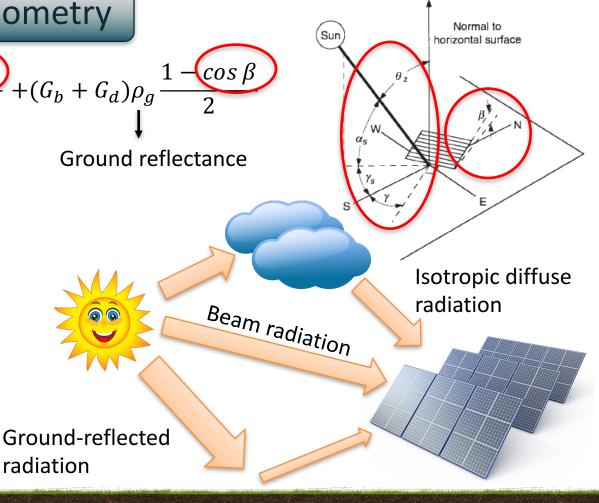
Measurements:


- From 04/2013 to 03/2014
- Daily total production


PV Modelling



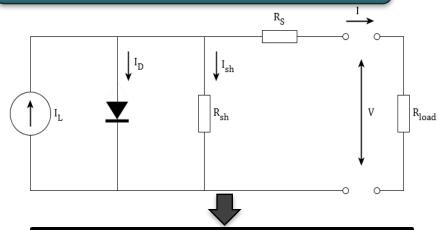
Zenith

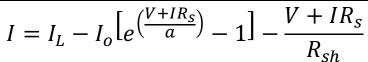


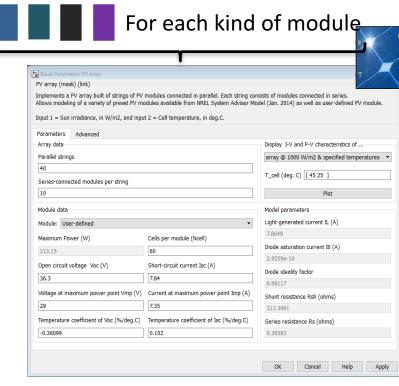
PV facilities angles:

- Slope (β)
- Latitude (ϕ)
- Azimut (γ)

Solar angles:


- Declination $(\delta) \leftarrow$ Day
- Hour angle (ω) Time





Equivalent circuit parameters for standard conditions

Manufacturer specifications

Standard conditions ($G_{st} = 1000 W/m^2$, $T_{c,st} = 25 \,^{\circ}C$)

Normal conditions ($G_{NOCT} = 800 W/m^2$, $T_{a,NOCT} = 20 °C$)

 V_{oc} , I_{sc} , V_{mp} , I_{mp} , $\mu_{V,oc}$, $\mu_{I,sc}$

 $T_{c,NOCT}$

PV module production

Manufacturer specifications

Normal conditions ($G_{NOCT} =$ $800 \ W/m^2$, $T_{a.NOCT} = 20 \ ^{\circ}C$)

 $T_{c,NOCT}$

 $G, G_b, \overline{G_d},$ θ, θ_z

Equivalent circuit parameters for standard conditions $(a_{st}, I_{L,st}, I_{o,st}, R_{sh,st}, R_{s,st})$

Equivalent circuit parameters

for any conditions

 $(a, I_L, I_o, R_{sh}, R_s)$

 T_a , G_T , η_{pv}

 $T_c = T_a + \left(T_{c,NOCT} - T_{a,NOCT}\right) \frac{G_T}{G_{NOCT}} \left(1 - \frac{\eta_{pv}}{0.9}\right)$

Absorbed radiation ratio $(S_T/S_{T,st})$

Module operation temperature (T_c)

$$\frac{a}{a_{st}} = \frac{T_c}{T_{c,st}} \qquad \frac{I_o}{I_{o,st}} = \left(\frac{T_c}{T_{c,st}}\right)^3 e^{\left(\frac{E_{g,st}}{kT_{c,st}} - \frac{E_g}{kT_c}\right)}$$

$$I_L = \frac{S_T}{S_{T,st}} \left[I_{L,st} + \mu_{I,sc} \left(T_c - T_{c,st} \right) \right]$$

$$R_{s} = R_{s,st}$$

$$\frac{L}{E}$$

$$\frac{E_g}{E_{g,st}} = 1 - C(T_c - T_{c,st})$$

$$\frac{R_{sh}}{R_{sh,st}} = \frac{S_{T,st}}{S_T}$$

Beam

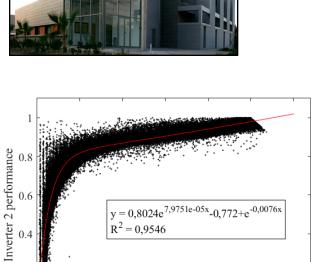
Isotropic diffuse

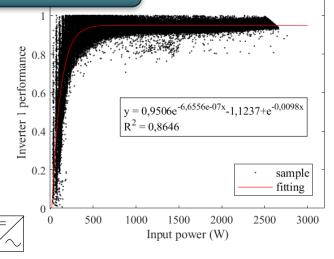
Ground-reflected

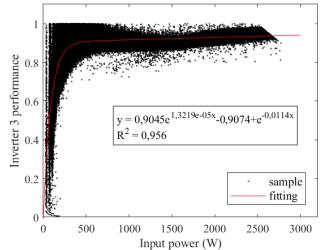
 $\frac{S_T}{S_{T,st}} = M_a \left(\frac{G_b}{G_{st}} R_b K_{\tau\alpha,b} + \frac{G_d}{G_{st}} K_{\tau\alpha,d} \frac{1 + \cos\beta}{2} + \frac{G_b + G_d}{G_{st}} \rho_g K_{\tau\alpha,g} \frac{1 - \cos\beta}{2} \right)$

"atmosphere effect"

Air mass modifier Incidence angle modifiers "glass cover effect"






Power-conditioning equipment

CIESOL PV field

- Fitting for $\eta_{inv} P_{dc}$
- R^2 values close to 1

Results vary between inverters

- Dependency with other variables?

500

1000

1500

Input power (W)

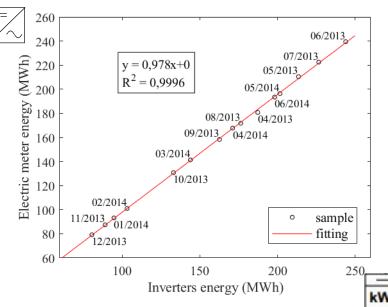
2000

sample

fitting

3000

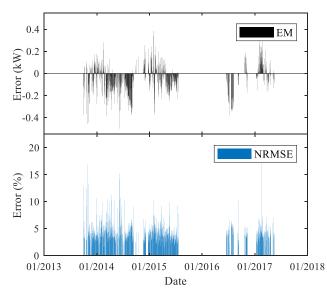
2500



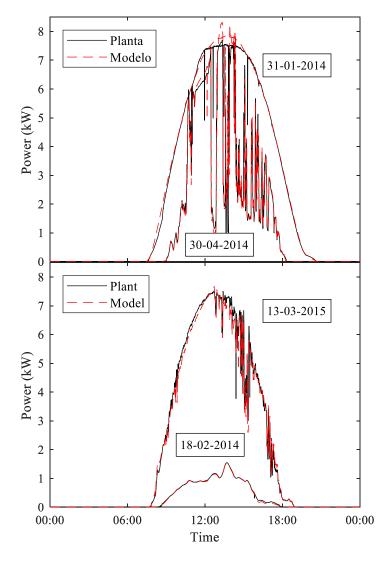
Power-conditioning equipment

Parking PV field

Power (P_{ac})	Fronius Agilo 100	Fronius IG+ 55v3
rower (r _{ac})	460 V / 820 V	230 V / 370 V / 500 V
5 % of $P_{ac,r}$	90.5 / 84.8 %	90.5 / 91.6 / 89.9 %
10 % of $P_{ac,r}$	94.6 / 91.5 %	91.5 / 92.2 / 90.8 %
20 % of <i>Pac,r</i>	96.6 / 94.7 %	93.4 / 93.6 / 93.3 %
25 % of <i>Pac,r</i>	96.9 / 95.4 %	94.1 / 94.2 / 93.3 %
30 % of <i>Pac,r</i>	97.0 / 95.7 %	94.4 / 94.5 / 93.8 %
50 % of <i>Pac,r</i>	97.2 / 96.3 %	94.7 / 95.4 / 94.7 %
75 % of <i>Pac,r</i>	96.9 / 96.1 %	95.2 / 95.7 / 95.0 %
100 % of <i>Pac,r</i>	96.5 / 95.7 %	95.3 / 95.9 / 95.2 %
Power	Fronius Agilo 10	00 Fronius IG+ 55v3
$DC(P_{dc,r})$	104,4 kW	5,25 kW
$AC(P_{ac,r})$	100 kW	5 kW
<u> </u>		


- Linear interpolations to get η_{inv} for inverters
- Constant coefficient η_{ac} for losses between these and the electric meter

CIESOL PV field


Indicator	Max.	Min.	Mean
EM [W]	387	-499	-57
NRMSE [%]	17,2	1,5	4,5

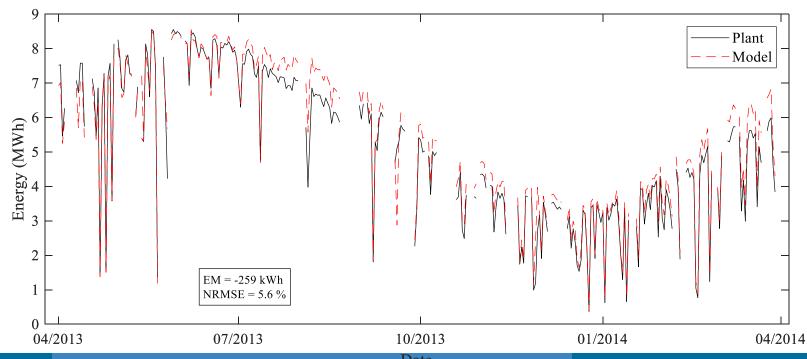
Quantitative validation:

- Daily mean error(black) and root meansquare error (blue)
- Gaps correspond to missing data

Qualitative validation:

- Days with high NRMSE (up) and low NRMSE (down) with different weather conditions

Parking PV field



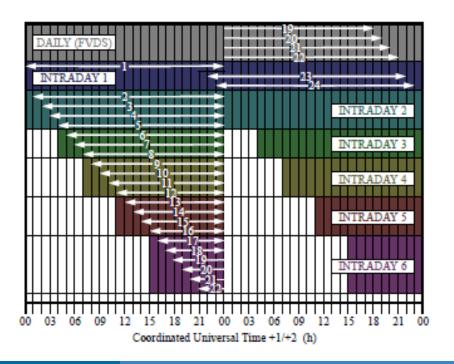
Quantitative validation:

- Same indicators but for the entire period
- Production underestimated

Qualitative validation:

- Production fluctuates with radiation during the year
- Peaks correspond to cloudiness

Optimization results

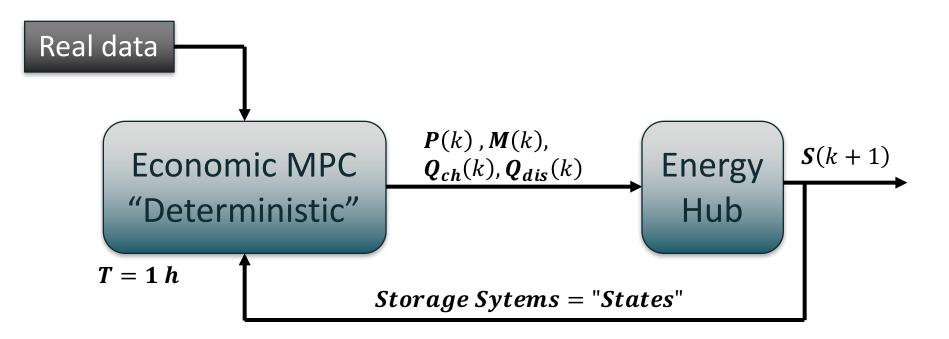

Control strategy

MPC based on economic criteria: deterministic approach based on real data

min
$$\sum_{k=1}^{H\frac{60}{T}} (\boldsymbol{c}(k)\boldsymbol{I}(k) - \boldsymbol{s}(k))\boldsymbol{M}(k) \frac{T}{60}$$
 ?

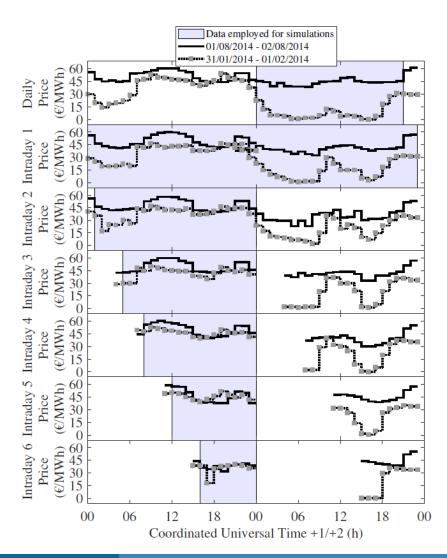
s.t.

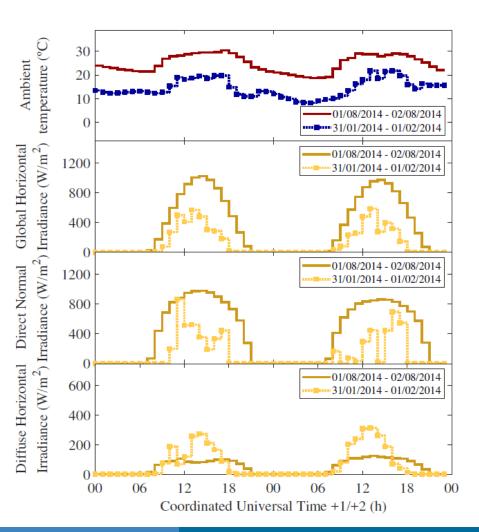
- From 0 h to 18 h (UTC+1/UTC+2) H is shorted in order to make it equal to the difference between the current time and midnight, the period when the electricity price is known
- From 18 h to 24 h (UTC+1/UTC+2) electricity price is published for the whole following day, so H takes a value of 24 h.



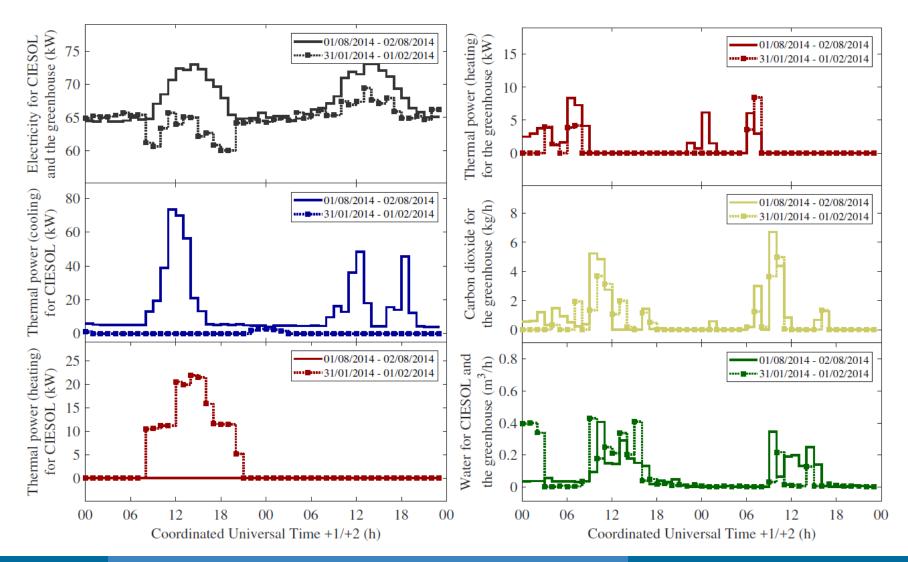
Control strategy

MPC based on economic criteria: deterministic approach based on real data

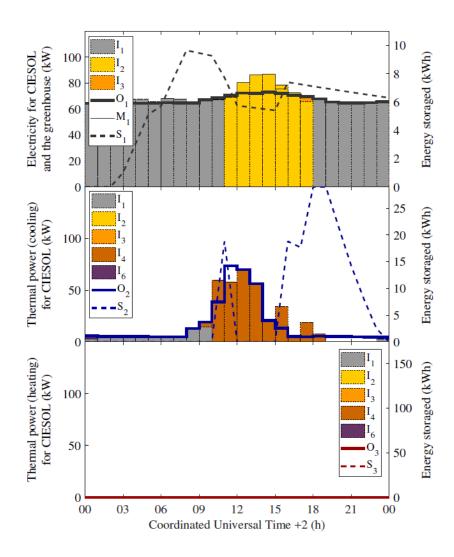

min
$$\sum_{k=1}^{H\frac{60}{T}} (\boldsymbol{c}(k)\boldsymbol{I}(k) - \boldsymbol{s}(k))\boldsymbol{M}(k)\frac{T}{60}$$
 ?

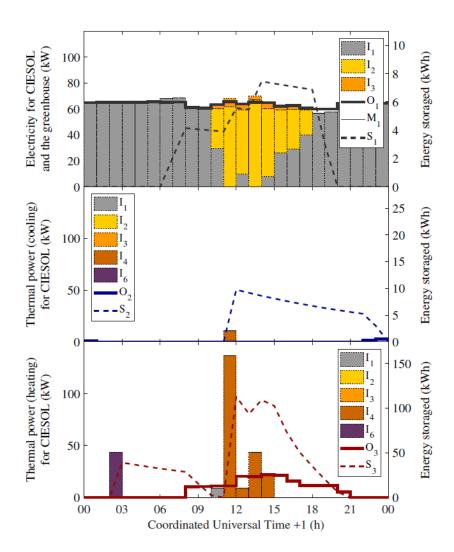


Simulation scenarios

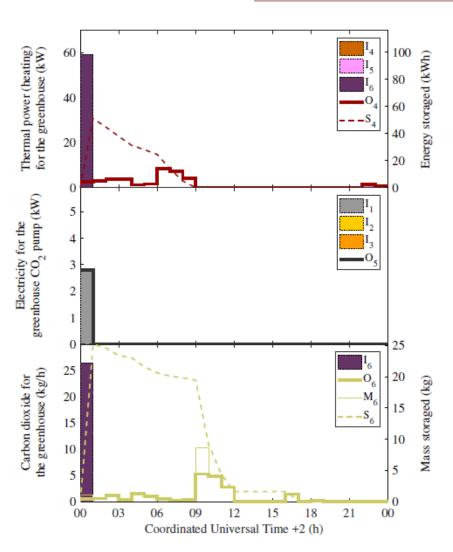


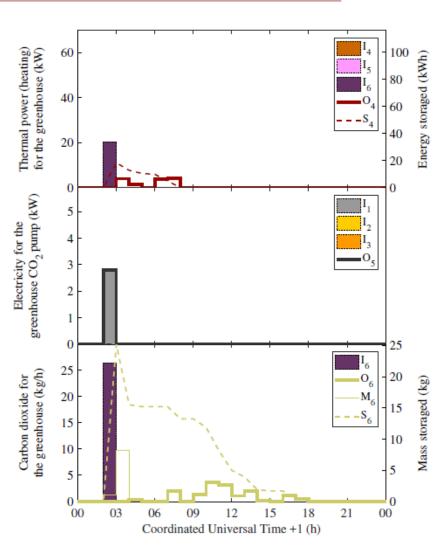
Simulation scenarios



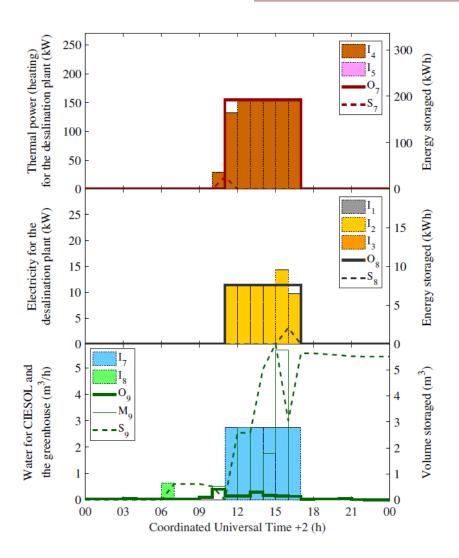


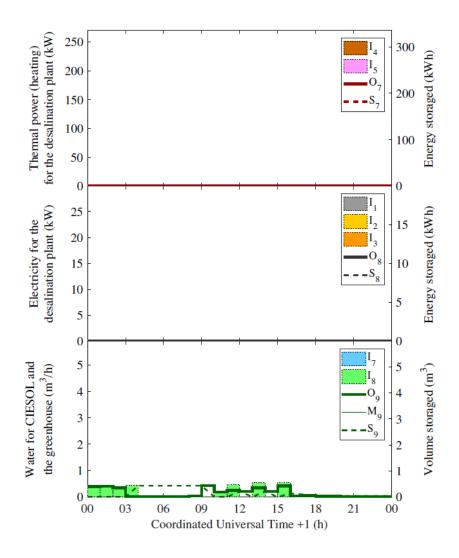
Simulation results





Simulation results

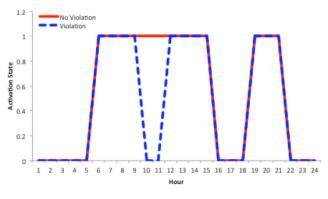




Simulation results

Extending the model and further applications

Maximum activations constraint



Problem: Frequent start ups and shut downs of certain technologies can be damaging, so you sometimes need to limit the number of start ups and shut downs that are allowed in a given time period.

Solution: Add 2 binary variables:

- $\delta_{on/off}$ = status change in technology operation
- $\delta_{i.t.CHP}$ = current status of technology operation

$$\delta_{on/off} = \left| \left(\delta_{i,t,CHP}^{on} - \delta_{i,t-1,CHP}^{on} \right) \right| \ \forall i$$
Now Previous timestep

- 0 if state remains the same
- 1 if state changes

(+1 if start-up)

Minimum run time constraint

Problem: Some equipment must run continuously for a minimum amount of time, due to the nature of the process, mechanical concerns or need to maintain a reasonable efficiency.

e.g.: CHP plants and heat pumps have poor efficiency for some time after starting.

Solution:

- Formulate the model such that a given device must operate for a minimum run time of t_m timesteps.
- Calculate a variable z(t) that tells you the nature of change in the device's operation between timesteps.

Ramping constraint

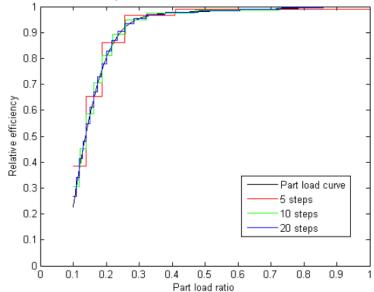
Problem: Some conversion technologies are limited in how quickly they can ramp up or down their energy output.

Solution: Add a set of constraints that control the difference in energy production levels between two consecutive time intervals.

Power output this timestep previous timestep
$$\downarrow \qquad \downarrow \qquad \downarrow \\ P_m(t) - P_m(t-1) \leq R^{up} \longleftarrow \text{Maximum allowable amount of ramping up}$$

$$P_m(t-1) - P_m(t) \le R^{down} \leftarrow \frac{\text{Maximum allowable amount of ramping down}}{\text{Maximum allowable amount of ramping down}}$$

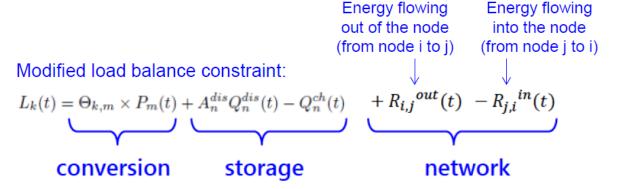
Stepwise linearization of conversion efficiencies



Problem: Many technologies have efficiencies that depend nonlinearly on the power output.

Solution: Linearization of the efficiency curve:

- Define the number/ranges of segments/steps into which to divide the original curve.
- 2. Define a virtual "bin" for each load segment, and add a binary variable for each bin.
- Add a "knapsack" constraint, so that only one bin can be active.
- Add power output constraints for each bin; set the efficiency according to the bin.



Representing and designing networks

Equation to account for network losses: $R_{i,j}^{out}(t) = A_R R_{i,j}^{in}(t)$ $A_R = network loss$

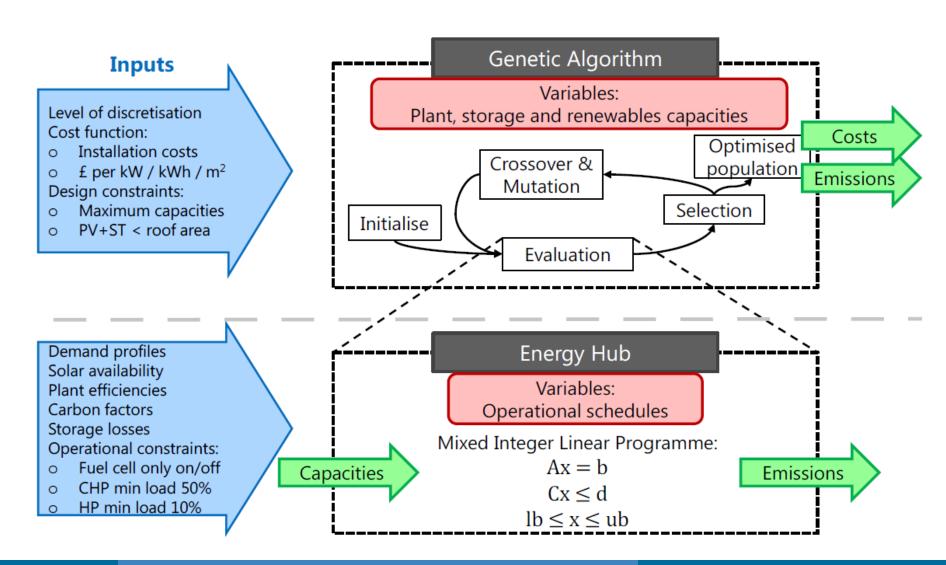
$$R_{i,j}^{out}(t) = A_R R_{i,j}^{in}(t)$$

$$A_R$$
 = network loss

Variable: Binary variable for each possible link indicating the installation of that link $\delta_{i,j}^{pipe}$

Constraint: Energy can only flow in one direction through a link

$$\delta_{i,j}^{pipe} + \delta_{j,i}^{pipe} \le 1$$
 $\forall i, j \text{ where } j > i$


Constraint: If a link is installed, then energy can be transferred via that link

$$H_{i,j,t}^{pipe-out} \leq M \cdot \delta_{i,j}^{pipe} \quad \forall i, j \text{ where } j \neq i$$

Layout design and sizing

Others

- Multi-objective optimization
- Stochastic and robust optimization for uncertainty
- Improving computational efficiency formulations

