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STATE-OF-THE-ART OF  
HIGH PERFORMANCE AND 
CLOUD COMPUTING

Traditional Clusters, MapReduce, 
Apache Spark, Cloud Platforms 
and Functional Programming



STATE-OF-THE-ART IN HIGH PERFORMANCE AND CLOUD COMPUTING

“TRADITIONAL SYSTEMS”

▸ Hardware constrains: 

‣ Required efficient languages. 

‣ Required specialised compilers. 

‣ Required further optimisation of the code.

C FORTRAN MPI OPENMP… …



STATE-OF-THE-ART IN HIGH PERFORMANCE AND CLOUD COMPUTING

ADVANTAGES OF CLOUD COMPUTING

▸ New Hardware advantages: 

▸ It’s Cheap 

▸ It’s Transparent 

▸ It’s Elastic/Scalable 

▸ Independent Data Storage



STATE-OF-THE-ART IN HIGH PERFORMANCE AND CLOUD COMPUTING

DISTRIBUTED (PARALLEL) COMPUTING ECOSYSTEM

{Traditional HPC 
and GPUs

“Classic” 
MapReduce}

{Memory based 
Distributed computing & 
“modern” language interfaces



“DISTRIBUTED DISCRETE BAYESIAN 
NETWORK CLASSIFIERS UNDER 
MAPREDUCE WITH APACHE SPARK”

IEEE BigData Software and Engineering  
(Helsinki, Aug 2015)  
CAEPIA’15 
(Albacete, Nov 2015) 
Knowledge-Based Systems (Target submission) 
(Special Issue on Volume, Variety and Velocity of Data Sciences)



DISTRIBUTED BAYESIAN NETWORK CLASSIFIERS UNDER MAP-REDUCE

MOTIVATION AND IMPACT



DISTRIBUTED BAYESIAN NETWORK CLASSIFIERS UNDER MAP-REDUCE

SUPERVISED CLASSIFICATION SCALABILITY



DISTRIBUTED BAYESIAN NETWORK CLASSIFIERS UNDER MAP-REDUCE

AUGMENTED NAIVE BAYESIAN CLASSIFIERS

NAIVE BAYES 

O(n·m)

O(n·c·v)
O(n·c·v)

1 data pass

Space:

Time:

Model:

Passes:

Complexity

Learning

‣ Fixed Structure 
‣ Only parameter estimation



DISTRIBUTED BAYESIAN NETWORK CLASSIFIERS UNDER MAP-REDUCE

AUGMENTED NAIVE BAYESIAN CLASSIFIERS

TAN 

O(n2·m + n2logn+n)

O(n2·c·v2)
O(n·c·v2)

1 data pass

Space:

Time:

Model:

Passes:

Complexity

Learning
‣ Estimate MI(Xi | Xj, C) for all pairs 
‣ Build MST with Chow-Liu’s, select root, add Class 
‣ Estimate parameters (reuse counts)



DISTRIBUTED BAYESIAN NETWORK CLASSIFIERS UNDER MAP-REDUCE

AUGMENTED NAIVE BAYESIAN CLASSIFIERS

KDB 

O(n2·m + n·logn+n·m)

O(n2·c·v2)
O(n·c·vk)

2 data passes

Space:

Time:

Model:

Passes:

Complexity

Learning
‣ Estimate MI(Xi | C) for all attributes and order ascending 
‣ For each Xi get best k previous vars with max MI(Xi | Xj, C) 
‣ Estimate parameters (cannot reuse counts for k>1)



DISTRIBUTED BAYESIAN NETWORK CLASSIFIERS UNDER MAP-REDUCE

AUGMENTED NAIVE BAYESIAN CLASSIFIERS

A1DE 

O(n2·m)

O(n2·c·v2)
O(n2·c·v2)

1 data pass

Space:

Time:

Model:

Passes:

Complexity

‣ Fixed structure 
‣ Estimate the parameters for all models in the ensemble

Learning



DISTRIBUTED BAYESIAN NETWORK CLASSIFIERS UNDER MAP-REDUCE

AUGMENTED NAIVE BAYESIAN CLASSIFIERS

A2DE 

O(n3·m)

O(n3·c·v3)
O(n3·c·v3)

1 data pass

Space:

Time:

Model:

Passes:

Complexity

…
Learning

‣ Fixed structure 
‣ Estimate the parameters for all models in the ensemble



DISTRIBUTED BAYESIAN NETWORK CLASSIFIERS UNDER MAP-REDUCE

PARALLELIZATION STRATEGY

▸ Either for structural or parametric learning the main bottleneck 
is estimating the Joint Frequency Distributions. 

▸ This builds a (k+1)-dimensional contingency table involving k 
attributes and the class which in general involves:

O(nk · m)

‣ Horizontal Parallelism: Distribute the counts (m is large) 

‣ Vertical Parallelism: Distribute attribute combinations (n is large)



DISTRIBUTED BAYESIAN NETWORK CLASSIFIERS UNDER MAP-REDUCE

HORIZONTAL PARALLELISM (NAIVE BAYES)



DISTRIBUTED BAYESIAN NETWORK CLASSIFIERS UNDER MAP-REDUCE

HORIZONTAL+VERTICAL PARALLELISM (NAIVE BAYES)



DISTRIBUTED BAYESIAN NETWORK CLASSIFIERS UNDER MAP-REDUCE

HORIZONTAL+VERTICAL PARALLELISM (AODE)



EXPERIMENTS ON LARGE SCALE DATA

COMPUTING ENVIRONMENT

▸ Our “BigSimd” cluster: 

▸ 7 nodes (1 master + 6 slaves) 

▸ Dual Intel Xeon E5-2609v3 1.90GHz hexacore processors (72 cores) 

▸ 64GB Main Memory 

▸ 4x1TB Disks 

▸ Apache Spark 1.6 + Apache Hadoop 2.6 (Cloudera cdh5.5)



EXPERIMENTS ON LARGE SCALE DATA

ONGOING EXPERIMENTS ON SYNTHETIC DATA

n
m 4M 8M 16M 32M

200

400

600

800

1.6GB 3.2GB 6.4GB 12.8GB

3.2GB 6.4GB 12.8GB 26.6GB

4.8GB 9.6GB 19.2GB 38.4GB

6.4GB 12.8GB 25.6GB 51.2GB



EXPERIMENTS ON LARGE SCALE DATA

EXECUTION TIME (LOG SCALE)



EXPERIMENTS ON LARGE SCALE DATA

SPEED-UP (AGAINST 4 TASKS)



EXPERIMENTS ON LARGE SCALE DATA

EFFICIENCY (AGAINST 4 TASKS)



EXPERIMENTS ON LARGE SCALE DATA

PAST EXPERIMENTS ON REAL DATA

SPLICE

ECBLD’14

EPSILON

141 50M 14GB

630 4.3M 5GB

2000 500k 1.9GB

#Attributes #Instances Size

‣ Horizontal: 4, 8, 32, 64 

‣ Vertical: 1, 2, 4, 8 

‣ Sequential: Optimized Weka+Moa



EXPERIMENTS ON LARGE SCALE DATA

AODE UNDER HADOOP ON REAL DATA
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EXPERIMENTS ON LARGE SCALE DATA

AODE UNDER SPARK ON REAL DATA



EXPERIMENTS ON LARGE SCALE DATA

A2DE (FAIL) UNDER HADOOP
splice
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mapV
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Size of the resulting model

A1DE
A2DE

Splice
7.7M

919.4M

A1DE
A2DE

ECBLD14
75.2M
70.7G

A1DE
A2DE

Epsilon
634.8M

700G



EXPERIMENTS ON LARGE SCALE DATA

CONCLUSIONS

▸ Scalability is obtained as well as elasticity with our design. 

▸ Memory can be managed using vertical partitions, efficiency may be 
improved by using optimal partitions of the data. 

▸ Higher order attribute combinations should be carefully managed in 
order to scale up with the data (A2DE).

FUTURE WORK:

▸ Testing heuristic or exact partitioning for vertical parallel classifiers. 

▸ Design of new classifiers based on A2DE and inspired in random 
subspaces.



LEARNING GENERAL BAYESIAN 
NETWORKS FROM LARGE SCALE 
DATA IN DISTRIBUTED FRAMEWORKS

Next steps in the task (and my thesis). Brief 
ideas and key concepts to move on from 
supervised classification.



LEARNING GENERAL BAYESIAN NETWORK MODELS

SAME APPROACH: EVALUATING CANONICAL ALGORITHMS

▸ The PC algorithm is the best candidate. Recent work (Madsen et al. 
2015) shows vertical distribution of independence test similar to TAN.

▸ Problems come up with the requirement of iterations (alleviated by 
Spark). Score+Search approaches difficult to adapt directly. 

▸ Independence test robustness over BigData… 

▸ Availability of big problems to be solved and tested…

MAIN CONCERNS



LEARNING GENERAL BAYESIAN NETWORK MODELS

NEW APPROACHES: SPLIT, APPROXIMATE AND MERGE

▸ A common approach for big data is to split up the data (horizontally) 
and learn sub-models to be merged (ensembles in classification)

DATA 
CHUNK

DATA 
CHUNK

DATA 
CHUNK

MERGE 
(NOT TRIVIAL NOR 

PARALLEL)

FINAL 
MODEL

Partial or approximate  
tests/scores



LEARNING GENERAL BAYESIAN NETWORK MODELS

NEW APPROACHES: SPLIT, APPROXIMATE AND MERGE

▸ A common approach for big data is to split up the data (horizontally) 
and learn sub-models to be merged (ensembles in classification)

DATA 
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DATA 
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LEARNING GENERAL BAYESIAN NETWORK MODELS

CHALLENGES

▸ Find an experimental environment, with suitable data and metrics. 

▸ Define proper horizontal partitioners for unsupervised data (random). 

▸ Determine if the statistical tests/scores are valid or have a boundary 
regarding m. 

▸ Evaluate the ultimate usefulness of such a “big” model, inference 
schemes, visualization, etc…
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