HPDGClassifier

An R package for supervised classification using hybrid probabilistic decision graphs

Antonio Fernández¹ José del Sagrado² Rafael Rumí³ Antonio Salmerón³

¹Banco de Crédito Social Cooperativo (BCC)
 ²Department of Informatics (University of Almería, Spain)
 ³Department of Mathematics (University of Almería, Spain)

PGMs4SDA 1st Meeting in Consortium Granada, 4-5 February 2016

Contents

- Motivation
- Discrete PDGs
- MoTBF-PDGs
- 4 The HPDGClassifier R package

Motivation

Using MoTBF-PDGs for supervised classification

- Take advantage of context specific independencies.
- Inference is carried out directly over the PDG structure in a time linear in the size.
- No restrictions on the model structure.
- No normality assumption.

Motivation

Using MoTBF-PDGs for supervised classification

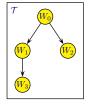
- Take advantage of context specific independencies.
- Inference is carried out directly over the PDG structure in a time linear in the size.
- No restrictions on the model structure.
- No normality assumption.

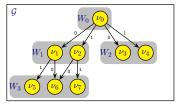
Why an R package?

- Make it available to the data science community.
- Take advantage of the R framework.
- Facilitate experimentation and comparison.

Contents

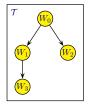
- Motivation
- 2 Discrete PDGs
- MoTBF-PDGs
- 4 The HPDGClassifier R package

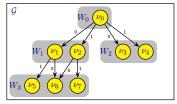




PDG structure

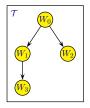
- Variables are organized in a tree structure \mathcal{T} .
- Each variable is represented by a set of nodes in \mathcal{G} .
- Every node ν_j belongs to one unique variable W_i .
- Each node has an outgoing arc for every state of its variable.

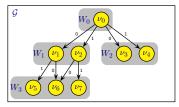




Operation reach

```
Let \mathbf{w} = \{W_0 = 0, W_1 = 1, W_2 = 1, W_3 = 1\}. Then: \operatorname{reach}(W_0, \mathbf{w}) = \nu_0; \operatorname{reach}(W_1, \mathbf{w}) = \nu_1 \operatorname{reach}(W_2, \mathbf{w}) = \nu_3; \operatorname{reach}(W_3, \mathbf{w}) = \nu_5
```





Operation reach

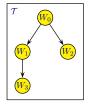
Let $\mathbf{w} = \{W_0 = 0, W_1 = 1, W_2 = 1, W_3 = 1\}$. Then:

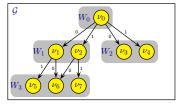
 $\mathtt{reach}(W_0,\mathbf{w})=\nu_0$; $\mathtt{reach}(W_1,\mathbf{w})=\nu_1$

 $\mathtt{reach}(W_2,\mathbf{w})=\nu_3$; $\mathtt{reach}(W_3,\mathbf{w})=\nu_5$

Factorisation

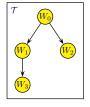
$$f(\mathbf{w}) := \prod_{W_i \in \mathbf{W}} f^{\mathtt{reach}(W_i, \mathbf{w})}(\mathbf{w}[W_i])$$

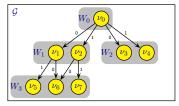




• Every ν_j contains a local distribution f^{ν_j} :

```
\begin{array}{ll} f^{\nu_0} = P(W_0) & f^{\nu_4} = P(W_2|W_0 = 1) \\ f^{\nu_1} = P(W_1|W_0 = 0) & f^{\nu_5} = P(W_3|W_0 = 0, W_1 = 1) \\ f^{\nu_2} = P(W_1|W_0 = 1) & f^{\nu_6} = P(W_3|W_1 = 0, \{W_0 = 0 \vee W_0 = 1\}) \\ f^{\nu_3} = P(W_2|W_0 = 0) & f^{\nu_7} = P(W_3|W_0 = 1, W_1 = 1) \end{array}
```





• Every ν_j contains a local distribution f^{ν_j} :

$$\begin{split} f^{\nu_0} &= P(W_0) & f^{\nu_4} &= P(W_2|W_0=1) \\ f^{\nu_1} &= P(W_1|W_0=0) & f^{\nu_5} &= P(W_3|W_0=0,W_1=1) \\ f^{\nu_2} &= P(W_1|W_0=1) & f^{\nu_6} &= P(W_3|W_1=0,\{W_0=0\vee W_0=1\}) \\ f^{\nu_3} &= P(W_2|W_0=0) & f^{\nu_7} &= P(W_3|W_0=1,W_1=1) \end{split}$$

Context-specific independencies:

$$I(W_3, W_0 \mid W_1 = 0)$$
, $\neg I(W_3, W_0 \mid W_1 = 1)$

Contents

- Motivation
- 2 Discrete PDGs
- MoTBF-PDGs
- The HPDGClassifier R package

MoTBF model

Univariate MoTBF potential

$$g_k(x) = \sum_{i=0}^{k} a_i \psi_i(x), \ a_i \in \mathbb{R}.$$

MoP example

$$\Psi = \{1, x, x^2, x^3\} : g(x) = 0.29 - 0.58x + 1.17x^2 + 0.44x^3$$

MTE example

$$\Psi = \{1, e^{-x}, e^{x}, e^{-2x}, e^{2x}\} : g(x) = 0.14 + 0.29e^{-x} + 0.59e^{x} - 0.22e^{-2x} + 0.08e^{2x}$$

MoTBF model

Univariate MoTBF potential

$$g_k(x) = \sum_{i=0}^k a_i \, \psi_i(x), \ a_i \in \mathbb{R}.$$

MoP example

$$\Psi = \{1, x, x^2, x^3\} : g(x) = 0.29 - 0.58x + 1.17x^2 + 0.44x^3$$

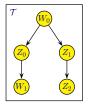
MTE example

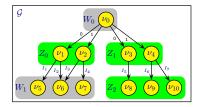
$$\Psi = \{1, e^{-x}, e^{x}, e^{-2x}, e^{2x}\} : g(x) = 0.14 + 0.29e^{-x} + 0.59e^{x} - 0.22e^{-2x} + 0.08e^{2x}$$

Conditional MoTBF potential

$$g_k^{(j)}(x \mid \mathbf{z} \in \Omega_Z^j) = \sum_{i=0}^k a_i^{(j)} \psi_i^{(j)}(x).$$

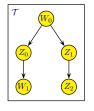
MoTBF-PDG model

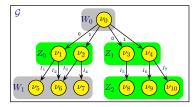




- No restrictions on the structure.
- A node ν representing $Z \in \mathbf{Z}$:
 - can have one or more outgoing edges for each Z_i child of Z in \mathcal{T} .
 - lacktriangle each edge represents an interval of Ω_Z .
- Normality assumption is not required.

MoTBF-PDG model





```
 f^{\nu_0} = P(W_0) \qquad f^{\nu_5} = P(W_1|W_0 = 0, Z_0 \in [0, 0.5))   f^{\nu_1} = \rho(Z_0|W_0 = 0) \qquad f^{\nu_6} = P(W_1|Z_0 \in [0.5, 1])   f^{\nu_2} = \rho(Z_0|W_0 = 1) \qquad f^{\nu_7} = P(W_1|W_0 = 1, Z_0 \in [0, 0.5))   f^{\nu_3} = \rho(Z_1|W_0 = 0) \qquad f^{\nu_8} = \rho(Z_2|W_0 = 0)   f^{\nu_4} = \rho(Z_1|W_0 = 1) \qquad f^{\nu_9} = \rho(Z_2|W_0 = 1, Z_1 \in [0, 0.3))   f^{\nu_{10}} = \rho(Z_2|W_0 = 1, Z_1 \in [0.3, 1])
```

MoTBF-PDG classifiers

PDG classifier structure

- ullet Contains a single tree over the variables ${f C}=\{C\}\cup {f X}$
- Variable C must be the root of the tree.

MoTBF-PDG classifiers

PDG classifier structure

- Contains a single tree over the variables $C = \{C\} \cup X$
- Variable C must be the root of the tree.

Classification

Given an evidence $\mathbf{x} = \{x_1, \dots, x_n\}$ the goal is to find c^* such that:

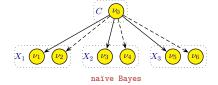
$$c^* = \underset{c \in R(C)}{\operatorname{arg max}} f(c \mid \mathbf{x}) = \underset{c \in R(C)}{\operatorname{arg max}} \frac{f(c, \mathbf{x})}{\sum_{c \in R(C)} f(c, \mathbf{x})}$$

$$\propto \underset{c \in R(C)}{\operatorname{arg max}} f(c, \mathbf{x})$$

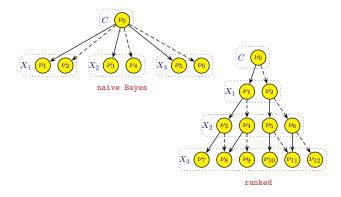
$$= \underset{c \in R(C)}{\operatorname{arg max}} f(c) \times f(x_1 \mid c) \times \ldots \times f(x_n \mid c, x_1, \ldots, x_{n-1})$$

Evaluate the conditional functions in the nodes reached by ${\bf x}$ for each $c \in R(C)$.

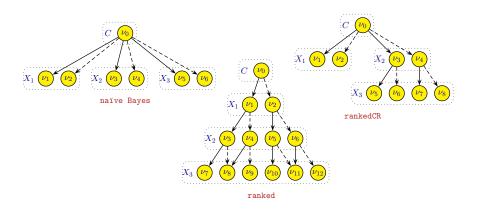
Learning MoTBF-PDGs



Learning MoTBF-PDGs



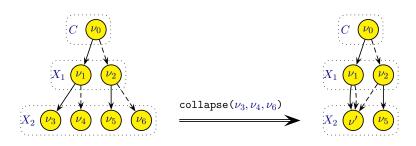
Learning MoTBF-PDGs



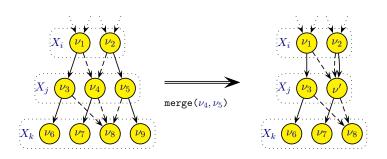
Other methods: CR, Chou-Liu

Collapsing nodes

- PDG is expanded during learning: reached data goes down.
- Collapse nodes to avoid learning from tiny samples.
- Applied when a new variable is included.



Merging nodes



- Merge operation is checked bottom-up once the model is learnt.
- Reduce overfitting and the model size.

Contents

- Motivation
- 2 Discrete PDGs
- MoTBF-PDGs
- 4 The HPDGClassifier R package

The HPDGClassifier R package

Implementation

- Object oriented design.
- Uses packages:
 - ▶ polynom
 - ▶ quadprog
 - ▶ foreach
 - ▶ infotheo
 - ▶ bnlearn
 - ▶ methods
 - ▶ codetools

The HPDGClassifier R package

Implementation

- Object oriented design.
- Uses packages:
 - ▶ polynom
 - ▶ quadprog
 - ▶ foreach
 - ▶ infotheo
 - ▶ bnlearn
 - methods
 - ▶ codetools

Features

- Standard classification setting
- Parallelisation