Modeling zero-inflated explanatory variables in hybrid Bayesian network classifiers for species occurrence prediction

A.D. Maldonado¹, P.A. Aguilera², A. Salmerón¹

¹Department of Mathematics, University of Almería

Probabilistic Graphical Models for Scalable Data Analytics Granada, 4 February 2016

ZiBNs for species ocurrence

A.D. Maldo P.A. Aguile

Introduction

Justificatio Backgroun Objective

RN classifiers

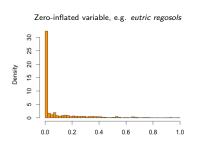
Brief introduction The TAN classifier The Zi-TAN classifier

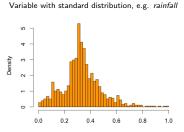
Case of study

Data description
Variable selection
Learning species
distribution models
Model validation

Results of the case study

Salamande Eagle


 $^{^2 \, {\}rm Informatics}$ and Environment Laboratory, Department of Biology and Geology, University of Almería


Case of study

Results of the case study

Conclusions

Depending on the scale and type of variable, environmental datasets may contain a large proportion of zeros.

The application of standard analysis techniques may yield inaccurate parameter estimates and misleading inferences.

Approach	Type of zero	Model	
Mixture models	True and false zeros	Zero-inflated models	
Conditional models	True zeros	Hurdle models	

True zero: the species does NOT saturate its entire habitat or the habitat is NOT suitable for the species.

False zero: the species DO occupy the habitat, but it is NOT there at the sampling moment or we failed to detect it.

Introduction

BN classifiers

Case of study

Results of the case study

Justification Background

BN classifiers

Brief introduction The TAN classifier The Zi-TAN classifier

Case of study

Study area
Data description
Variable selection
Learning species
distribution models

Results of the case

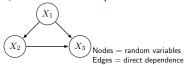
Salamande Eagle

Conclusions

Our goal is to improve the predictive power of hybrid Bayesian network classifiers applied to **Species Distribution Models** by explicitly modeling the zero values in **explanatory variables**.

The new model, zero-inflated tree augmented naive bayes (ZiTAN), extends the already known tree augmented naive bayes (TAN).

Introduction


RN classifiers

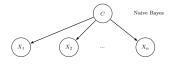
Case of study

Results of the case study

Conclusions

Qualitative component

Quantitative component


Joint probability distribution

$$p(x_1,\ldots,x_n)=\prod_{i=1}^n p(x_i|pa(x_i))$$

$$p(x_1,x_2,x_3) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)$$

BNs for classification

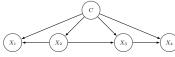
Discrete variable of interest C and a set of either continuous or discrete explanatory variables (X_1, \ldots, X_n) .

Each observation in the dataset will be classified as belonging to class c^* as

$$c^* = \arg\max_{c \in \Omega_C} p(c|x_1, \dots, x_n),$$

Introduction

RN classifiers


Case of study

Results of the case study

Conclusions

Structural learning

Tree augmented naive Baves

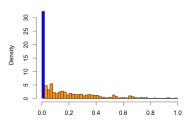
Each feature has one more parent besides C.

The conditional mutual information between the feature variables given C is used to obtain the TAN structure.

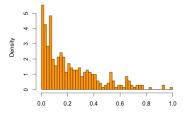
Parametric learning

Mixtures of Truncated Exponentials

$$f(z_1, \dots, z_c) = a_0 + \sum_{i=1}^m a_i \exp \left\{ \sum_{j=1}^c b_i^{(j)} z_j \right\}$$


MTE densities are used to model the distributions in the network. A mixture of potentials is fit in each partition of the variable.

3 intervals were used.


A random variable, X, is a zero-inflated random variable if

$$f(x) = \begin{cases} p & \text{if } X = 0\\ g(x) & \text{if } 0 < x \le 1, \end{cases}$$

 $\label{eq:constraints} \begin{array}{l} \mbox{where } 0$

 \boldsymbol{p} represents the proportion of $\boldsymbol{0}$

g(x) corresponds to the positive values of the variable

ZiBNs for species

.D. Maldonado

Introduction

Justification Background Objective

BN classifiers

Brief introduction
The TAN classifier
The Zi-TAN classifier

Case of study

Study area

Data description

Variable selection

Learning species
distribution models

Model validation

Results of the case study

Salamande Eagle

The artificial variables, X^*

DATASET

Г
L
ı

ZERO-INFLATED DATASET

v	_	v	v	v	
X_1		X_2	<i>X</i> ₃	X_4	С
	0	0.97	0.26	0.51	0
	0	0.36	0.83	0.06	1
	0	0.12	0.81	0	1
	0	0.76	0.07	0	0
	0	0.34	0.65	0.2	0
	0	0.54	0.21	0	1
0.:	12	0.34	0.27	0	0
0.0	05	0.08	0.74	0	1
	0	0.13	0.1	0	1
0.4	43	0.19	0.27	0	0

X_1	X ₁ *	X_2	<i>X</i> ₃	X_4	X ₄ *	С
0	0	0.97	0.26	0.51	1	0
0	0	0.36	0.83	0.06	1	1
0	0	0.12	0.81	0	0	1
0	0	0.76	0.07	0	0	0
0	0	0.34	0.65	0.2	1	0
0	0	0.54	0.21	0	0	1
0.12	1	0.34	0.27	0	0	0
0.05	1	0.08	0.74	0	0	1
0	0	0.13	0.1	0	0	1
0.43	1	0.19	0.27	0	0	0

An artificial binary random variable is defined as

$$X^* = \begin{cases} 0 & \text{if } X = 0 \\ 1 & \text{otherwise }, \end{cases}$$

and its probability function is

$$f(x^*) = P(X^* = x^*) = \begin{cases} p & \text{if } x^* = 0\\ 1 - p & \text{if } x^* = 1. \end{cases}$$

ZiBNs for species ocurrence

Introduction

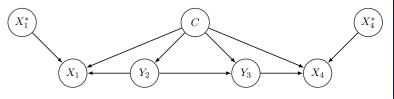
Objective

BN classifiers

Case of study

Results of the case study

Introduction


BN classifiers

Case of study

Results of the case study

Conclusions

For each zero-inflated random variable, X, in the TAN model, we incorporated an artificial variable, X^* .

For each node X, we attached a new conditional distribution

$$f(x_i|x_i^*, y_1, \dots, y_m) = \begin{cases} 1 & \text{if } x_i^* = 0, x_i = 0\\ \frac{1}{1-p} f(x_i|y_1, \dots, y_m) & \text{if } x_i^* = 1, 0 < x_i \le 1 \end{cases}$$

Case study

The aforementioned methodology was applied to **Species Distribution Models** through a case study involving *Salamandra salamandra* and *Aquila adalberti*.

ZiBNs for species ocurrence

A.D. Maldonado, P.A. Aguilera, A. Salmerón

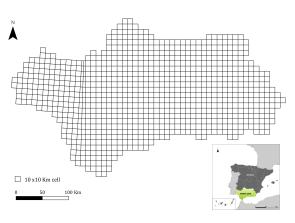
Introduction

Justification Background Objective

BN classifiers

Brief introduction The TAN classifier The Zi-TAN classifier

Case of study


Data description
Variable selection
Learning species
distribution models
Model validation

Results of the case study

Salamande Eagle

Study area

The study area is Andalusia.

Each cell is a sampling unit.

There are 887 cells.

ZiBNs for species ocurrence

A.D. Maldonado, P.A. Aguilera, A. Salmerón

Introduction

Justification Background Objective

BN classifiers

Brief introduction The TAN classifier The Zi-TAN classifier

Case of study

Data description
Variable selection
Learning species
distribution models

Results of the case study

Salamande Eagle

Case of study

Results of the case study

lusions

Variable	Description
Salamander /Eagle	Presence/absence of the given species in each cell
T (°C)	Average of annual mean temperature for the 30 year period $1971-2000$ in each cell
Rainfall (mm)	Average of annual rainfall for the 30 year period 1971-2000 in each cell
PET (mm)	Average of the annual potential evapotranspiration for the 30 year period 1971–2000 in each cell
Humidity index	Average of annual humidity index for the 30 year period 1971-2000 in each cell
Land uses (%)	Percentage of occupation of each land-use (#44) within each cell
Soil (%)	Percentage of occupation of each soil type (#63) within each cell
Lithology (%)	Percentage of occupation of each lithological unit (#41) within each cell
Z (m a.s.l.)	Average elevation of each cell
Slope (%)	Average slope of each cell
Aspect (°)	Average aspect of each cell
//	11

number of variables

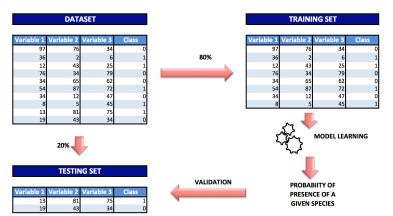
Variable selection

The variables were selected by experts.

Variable	Zeros/887	Variable	Zeros/887	
Salamander	587	Eagle	832	
Rainfall	-	Rainfall	-	
Humidity index	-	Temperature	-	
Dense oak	485	Evapotranspiration	-	
Oak with shrub	301	Oak with shrub	301	
Oak with herbaceous crops	463	Oak with herbaceous crops	463	
Woodlands with herb. crops	394	Rainfed herbaceous crops	224	
Grassland	220	Marshes	857	
Olive groves	268	Albic arenosols	864	
Eutric regosols	684	Eutric regosols	684	
Calcaric regosols	553	Solonchaks	834	
Eutric cambisols	702	Eutric cambisols	702	
Sand-silt-clay-gravel	399	Slate-shale-greywacke-quarzite	810	
Slate-greywacke-sandstone	726	Slate-greywacke-sandstone	726	
Volcano-sedimentary complex	795	Sand	862	
-	-	Silt-clay	832	

BN classifiers

Brief introduction
The TAN classifier
The Zi-TAN classifier


Case of study Study area

Variable selection
Learning species
distribution models

Results of the case study

Salamande Eagle

Learning Species Distribution Models

ZiBNs for species ocurrence

.D. Maldonado .A. Aguilera, A

Introduction

lustification Background

BN classifiers

Brief introduction
The TAN classifier
The Zi-TAN classifier

Case of study

Study area Data description

Learning species distribution models

Results of the case study

Salamande Eagle

Model validation

ZiBNs for species ocurrence

Introduction

BN classifiers

Case of study

Results of the case study

Conclusions

10-fold Cross-validation

Test subset Train subset

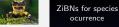
The 10 measures of overall accuracy are compared using Wilcoxon's signed rank Test.

Cochran's Q test

The proportion of presences in the 3 groups are compared. If significant differences are found, pairwise exact McNemar's test is used.

Confusion matrix and performance statistics

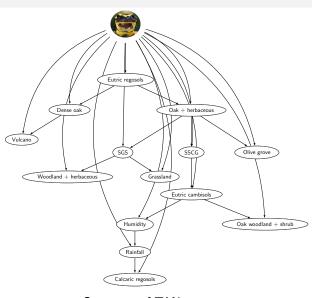
0: absences and 1: presences.


TP: true presence: TN: true absence: FP: false

presence: FN: false absence Predicted

TAN 0 TN FΡ Real FΝ TΡ TP+TNAccuracy TP+FN+FP+TNRecall $(1+\beta)\times \text{Recall}\times \text{Precision}$ f-score $\beta^2 \times \text{Recall} + \text{Precision}$ AUC $\frac{1}{2}(\text{Recall} + \text{Specificity})$

Results - Salamandra salamandra



Introduction

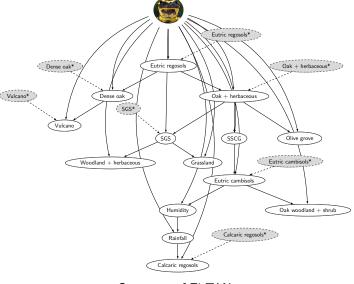
BN classifiers

Case of study

Results of the case study

Structure of TAN

Results - Salamandra salamandra



Introduction

BN classifiers

Case of study

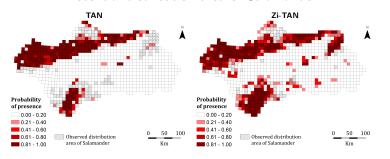
Results of the case study

Structure of Zi-TAN

Results - Salamandra salamandra

ZiBNs for species ocurrence

Introduction


BN classifiers

Case of study

Results of the case study

Conclusions

Potential distribution area of Salamander

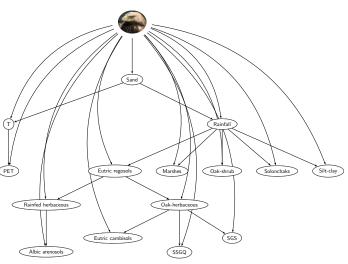
		Predicted			
		TAN		Zi-TAN	
		0	1	0	1
Real	0	104	5	103	6
Real	1	32	37	19	50
Accuracy		0.792 0.860			-
Recall		0.536		0.725	
f-score		0.667		0.800	
AUC		0.745 0.835			

Wilcoxon Test: p - value > 0.01Cochran Test: p - value < 0.01

Pairwise McNemar Test

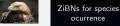
Observed - TAN: p - value < 0.01

Results - Aquila adalberti

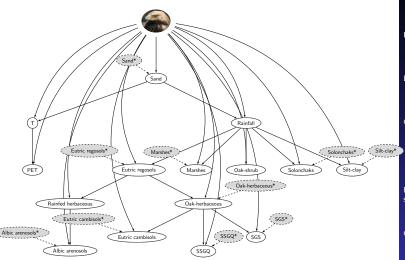

Introduction

BN classifiers

Case of study


Results of the case study

Results - Aquila adalberti



Introduction

BN classifiers

Case of study

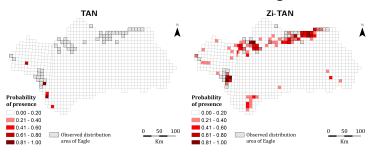
Results of the case study

Structure of Zi-TAN

Results - Aquila adalberti

ZiBNs for species ocurrence

Introduction


BN classifiers

Case of study

Results of the case study

Conclusions

Potential distribution area of Eagle

		Fredicted			
		TAN		Zi-TAN	
		0	1	0	1
Real	0	165	2	167	0
iveai	1	11	0	8	3
Accuracy		0.92	0.95		955
Recall		0		0.273	
f-score		-		0.429	
AUC		0.494 0.636		536	

Dradicted

Wilcoxon Test: p - value > 0.01Cochran's Test: p - value < 0.01

Pairwise McNemar Test

Observed - TAN: p - value < 0.01

Observed - Zi-TAN: p - value < 0.01

Introduction

Justification Background Objective

BN classifiers

Brief introduction
The TAN classifier
The Zi-TAN classifier

Case of study Study area

Study area
Data description
Variable selection
Learning species
distribution models

Results of the case study

Salamande Eagle

- Modeling zero-inflated feature variables improves the performance of the classifier.
- ► For **salamander**, a frequent species in the study area, the results given by both classifiers were reasonable.
- For eagle, a scarce species in the study area, the Zi-TAN model substantially improved the distribution area predicted by the TAN model.