

TIN2013-46638-C3-1-P

15/10/2014

Reference: TIN2013-46638-C3-1-P

Project full title: Probabilistic graphical models for scalable data analytics

Project Acronym: PGM-SDA

Deliverable no.: D16.1

Title of the deliverable: Methodology for service oriented requirement analysis

Start date: 15/10/2014

End date:

Author(s): Antonio Fernández Álvarez; Irene Martínez Masegosa; Rafael Rumí
Rodríguez; José del Sagrado Martínez; Antonio Salmerón Cerdán

Participant(s): Irene Martínez Masegosa; José del Sagrado Martínez; Antonio Fernández
Álvarez; Luis de la Ossa; PabloBermejo; Rafael Cabañas de Paz; Javier
García Castellano; Manuel Gómez Olmedo

Objective: 7. Software platform development

Version: 0.1

Total number of pages:

Start date of project: 1st Januery 2014. Duration: 36 months

Abstract:

Keywords list:

2 TIN2013-46638-C3-1-P /PGM-SDA

Contents

1. Motivation

2. SOA basics

3. SOA lifecycle

4. Services

1. Classification

2. Service identification

3. Service analysis and design

5. Get the requirements for a single service: Service Specification

6. Methodology for service oriented requirement analysis

D16.1 Methodology for service oriented requirements analysis 3

Document history

Version Date Author (Unit) Description

v0.1 15/10/2014 Antonio Fernández Álvarez; Irene
Martínez Masegosa; Rafael Rumí
Rodríguez; José del Sagrado
Martínez; Antonio Salmerón Cerdán

First draft

4 TIN2013-46638-C3-1-P /PGM-SDA

1 Motivation

The project “Probabilistic graphical models for scalable data analytics (PGM-SDA)” has as one of its
main objectives to produce the necessary software tools as to allow the development of applications based
on a web-services architecture for PGMs. In this way, we expect to create a framework where mobile
hardware devices could be used in big data contexts, as the core processing would rely on a centralized
server that would process the data and run the necessary algorithms, while the mobile device would
interact through the web services interface. A Service Oriented Architecture in the field of PGMs (PGM-
SOA) can provide a general framework for organizing algorithms integration and serves as basis for the
development of information systems for PGMs based on open platforms, data communication and
software interoperability standards.

This document describes the service-oriented requirements engineering (SORE) process adopted in the
PGM-SDA project. As there is no common and agreed method for conducting SORE for distributed
scenarios, the PGM-SDA SORE process (based on selected methodological approaches from existing RE
processes) has as main goal to identify basic services that provide basic functionality (at the level of
business) for a specific problem domain (applications) conforming a Service Oriented Architecture in the
field of PGMs (PGM-SOA).

The PGM-SDA SORE process is conceived as an aid to elucidate the PGM-SOA and, thus, has been
tailored to the specific characteristic of the PGM-SDA project: several research groups are developing
methods and algorithms, often internationally and, usually, each one of them use an own system and
software for making its own developments. Because of that, this process is focused on the joint elicitation
of service requirements from use case providers coming from different research groups geographically
dislocated.

This is partly achieved by the development of a unified formal elicitation template for service-oriented
requirements. The template also supports transparency in the overall service-oriented requirements
engineering process and helps prioritize requirements and resolve potential conflicts across domains.
However, non-functional requirements are out of the process scope, but are mentioned in the project
memory document.

2 SOA basics

First of all, let us begin giving a definition of SOA. There are two formal definitions created, respectively
by the OASIS [OAS06] group and the Open Group [OPE09].

• OASIS defines SOA [OAS06] as:

“A paradigm for organizing and utilizing distributed capabilities that may be under the

control of different ownership domains. It provides a uniform means to offer, discover,

interact with and use capabilities to produce desired effects consistent with measurable

preconditions and expectations.”

• The Open Group defines SOA [OPE09] as:

“Service-Oriented Architecture (SOA) is an architectural style that supports service-

orientation.

Service-orientation is a way of thinking in terms of services and service-based

development and the outcomes of services.

A service:

- Is a logical representation of a repeatable business activity that has a specified

outcome (e.g., check customer credit, provide weather data, consolidate drilling

reports)

- Is self-contained

- May be composed of other services

- Is a “black box” to consumers of the service”

D16.1 Methodology for service oriented requirements analysis 5

From the last formal definition, when we develop applications in the PGM-SDA framework, the main

features of PGMs should be perceived as services in a distributed system. Thus, we consider that a
Service-oriented architecture (SOA) [Abu08] is a distributed transaction scheme for achieving

interoperability in heterogeneous distributed systems deployments, which can be viewed as an interaction

between a service requester and a service provider. There are three types of roles (see Fig. 1) in SOA
architecture [Jia09]:

• service provider publishes its own services,
• service broker register provider of issued service, classifies them and provides search services,
• service requester searches the services they need using a service agent, and then uses the

service it has found.

Fig. 1. SOA Architecture.

Every service has to be well defined in order to be usable by requesters/consumers. The elements of a
service are:

• A contract which specifies what a service provider offers in order to cover the needs of a
service consumer.

• An interface that defines how a service can be accessed and used.
• An implementation is the software realization of the service specification.

Consumers can access to the contract and interface of a service, whilst its implementation is kept hidden.
The objective of consumers is to use services and they are not interested in the details of their
implementations.

Following [Jus07], the key technical concepts of SOA are:

• Services. As the goal of SOA is to structure distributed systems based on the abstraction of
business rules and functions, a service can be considered as an IT representations of business
functionality. Externally services hide technical details and through their interfaces should be
designed in such a way that business people can understand them.

• Interoperability. As services spread over heterogeneous systems, the goal of SOA is to connect
those systems easily.

• Loose coupling. Loose coupling deals with the minimization of dependencies. When
dependencies are minimized, modifications have minimized effects, and the systems is fault
tolerant (it still runs when parts of it are broken or down). Minimizing dependencies
contributes to fault tolerance and flexibility. In addition, loose coupling leads to scalability.
Large systems tend to challenge limits. Therefore, it is important to avoid bottlenecks eluding
cost for growing. One way to introduce loose coupling is to avoid introducing any more
centralization than is necessary (unfortunately, you need some centralization to establish SOA
because you need some common base).

 In summary [Dik12], SOA tries to decouple (or loose-couple) data and logic that do not belong

together through the appliance of services. This loose coupling occurs on the level of ownership, business
logic, data, and deployment. The SOA bases are services, which are small building blocks that provide
clear access to a limited set of capabilities that belong together. For a particular set of capabilities, the
same service is responsible for the business logic and data consistency. If the data belonging to a service

6 TIN2013-46638-C3-1-P /PGM-SDA

needs to be changed, it is done through that service alone, thus enforcing a single point of access for that
particular functionality and data.

3 SOA lifecycle

The SOA lifecycle, as is described by the IBM SOA Foundation [Hig05], is a process that comprises two
development activities (model and assemble) and two operation activities (deploy and manage). The four
phases, performed iteratively, are [Mitt06, High05]:

• Model. Requirements are gathered, end-to-end business processes are modeled, analyzed,
designed, and then further optimized to form the future state business processes for the
enterprise. This activity is in charge of business analysis and design (requirements, processes,
goals, key performance indicators) and IT analysis and design (service identification and
specification).

• Assemble. Services are implemented. The implemented services are then assembled; that is, they
are discovered, choreographed and composed to implement the enterprise business processes
that are tested to satisfy requirements.

• Deploy. The assembled business processes are deployed on the operating run-time environment.

• Manage. The services and the business processes that are executing on the run time are
monitored and analyzed to ensure their smooth operations. That is to say, the entire service
model is managed and monitored from IT and business perspectives. Information gathered
during this phase is used to gain real-time insight into business processes, enabling better
business decisions and feeding information back into the life cycle for continuous process
improvement.

The entire process (see Fig.2) is controlled and orchestrated by the governance policies, to provide
guidance and oversight for the target SOA application.

Fig. 2. SOA Lifecycle.

4 Services

Services are the building blocks of SOA enabled application. It is basically an encapsulation of data and
business logic. A service consists of an interface, has an implementation and exhibits certain pre-defined
behavior. The service interface defines a set of operations, which portrays (or exposes) its capabilities.
Operations are the things that a service can do.

4.1 Classification

According to [Jus07] there are three common categories of services, and as a consequence it is easy to
introduce different SOA layers and stages of expansion. Thus, services can be classified as:

D16.1 Methodology for service oriented requirements analysis 7

• Basic services are services that provide basic business functionality, in such a way that it does
not make sense to split them into multiple services. Usually, these services provide the first
fundamental business layer for one specific backend or problem domain. The role of these
services is to wrap a backend or problem domain so that consumers (and higher-level services)
can access the backend by using the common SOA infrastructure.

• Composed services represent the first category of services that are composed of other services
(basic and/or other composed services). In SOA terminology, composing new services out of
existing services is called orchestration. They are typically services that access multiple
backends and therefore are composed of multiple basic services. An example of a composed
service would be a service that transfers money from one backend to another. In this case, the
composed service would call one basic service that withdraws money from one backend and
another basic service that pays the money into another backend.

• Process Services represent long-term workflows or business processes. A process service
represents a long-running flow of activities (services) that is interruptible (by human
intervention). Unlike basic and composed services, a process service usually has a state that
remains stable over multiple calls. A typical example of a process service is a shopping-cart
service: Its state would contain the contents of the shopping cart, perhaps combined with some
customer data so that the customer’s order could be maintained and manipulated over multiple
sessions.

4.2 Service Identification

Services are at the core of SOA and we need to find what services are needed based on the requirements
of clients. This process is called service identification [Ars04, Mitt06]. Services must be isolated and its
scope fully delimited in terms of business impact.

Service identification has to deal not only with already existing services, but also with identifying
services that do not yet exists. In consequence, identification can also result in the need to modify existing
services, for example adding additional operations. Usually, it is difficult to identify all the services at
once. It is better to proceed iteratively from a small initially identified set of services and gradually
expand this set in subsequent iterations.

Generally, two approaches are applied to identifying services: top-down and bottom-up.

4.2.1 Top-down service identification

The top-down service identification approach (see Fig. 3) is business driven. You start identifying
business processes that exists, and break them down based on functionality (i.e. functional areas or
subsystems). In this step, business documentation can be helpful in the identification of services. Then,
you have to determine which are the services needed and compare them with the services that exist in
your organization. If they already exist, you simply can reuse, else you have to define the new services.

Fig. 3. Top-down service identification.

8 TIN2013-46638-C3-1-P /PGM-SDA

4.2.2 Bottom-up service identification

On the other hand, bottom-up service identification (see Fig. 4) is Information Technology (IT) driven.
You start by digging deep into existing systems or applications looking for services (i.e. functionality is
promoted as service). Each application is modeled as a set of services that are there because there is a
concrete need for them. Then, the necessary services can be found in this set of services (i.e. you can
reuse them) or not (i.e. you have to define them). In this approach difficulties arise due to problems with
business documentation (strategy, processes, etc.), as it does not exists or is outdated.

Fig. 4. Top-down service identification.

4.2.3 What approach to service identification should we use?

In reality, most organizations use a hybrid approach. It's important to understand that both approaches
have different focus. The top-down approach is more business focused; whilst bottom-up is more IT
focused. On one hand, services identified in a top-down approach have the risk of being too abstract to be
useful. Whilst, on the other, services identified in a bottom-up approach have the risk of being too
specific and might require some modifications to be useful.. So, the reason for the hybrid approach
resides on the fact that SOA can succeed only if it is focused on both business and IT.

4.3 Service Analysis and Design

The issues included in the Open Group Service definition [OPE09] can be mapped against service design
principles. Each one of them indicates the level of quality that a service needs to reach in order to be
considered as a usable building block in the SOA we are trying to build. Table 1 shows the mapping
between service definition and service design principles:

Table 1. Mapping of service definition issues against service design principles.

Service definition issue [OPE09] Service design principle

A logical representation of a

repeatable business activity that

has a specified outcome

Provide value
Meaningful
Idempotent

Self-contained Isolated

Composed of other services Granularity
Reusable
Interoperable

A “black box” to consumers Implementation hiding

Service design principles help service provider to create reusable services and help service consumer to
judge if the services are well designed. The list below describes the mapped service design principles and
can be used as a checklist when creating services [Dik12]:

D16.1 Methodology for service oriented requirements analysis 9

• Provide value Consider if and why you need every service. If a service doesn't provide value to

someone or something (clients, departments, other IT systems, and so on) then it is probably not
a good service, or only part of a service and not a service in itself.

• Meaningful It should be easy for (future) consumers to use a service. Therefore the service
interface needs to be meaningful to the consumer and not too abstract or complex. If a service is
not meaningful, the required effort to consume a service will increase. Consumers will not be
able or are reluctant to use such services since they don't understand them or it is too expensive
to use and integrate them into their landscape.

• Idempotent A service should be predictable; invoking a service operation with the same input
more than once should result in the same outcome.

• Isolated Services only provide flexibility and can only be easily changed if their operations are
independent of other operations within the same or another service (this is isolation definition).
If a change to an operation results in changes to several other operations that are tightly coupled
to the originally changed operation, we lose flexibility. Operations need to be separate building
blocks that provide capabilities themselves.

• Granularity Services are of different importance based on the degree of value or functionality
they add.

• Reusable means a service can be used by more than one consumer.

• Interoperable Services should be easy to integrate into our IT landscape. Interoperability is a
measure for the amount of effort it takes to use and invoke services. Interoperability is achieved
by using standards for describing, providing, and accessing services such as XML, WS-*,
WADL, and WSDL. Note that only the service interface needs to be interoperable; the
implementation itself can be proprietary. For example, when you order breakfast in a coffee shop
using consumer’s language, you don't care what the cooks’ language is, as long as they serve the
breakfast you have ordered. Using standards to provide and access services helps to mix and
match different technologies such as PL/SQL, .NET, Java, and PHP.

• Implementation hiding Consumers don't care about the actual implementation behind the
service; this is a black box for them. Consumers focus on the contract and interface of a service
to decide whether to use it and to be able to actually consume it. In short, a service and
especially its interface and contract, should be self-describing and understandable.

Hiding implementation details is a common approach in several programming paradigms,
even more so for SOA in which we specifically differentiate between contract, interface, and
implementation. The service interface should abstract away (or hide) the specifics of the
underlying systems and organizations that do the actual work. This makes it easier to change,
upgrade, or swap the implementation without breaking interoperability since the interface can
stay the same. It also doesn't burden consumers who don't need to know about the specifics of
the implementation.

5 Get the Requirements for a Single Service: Service Specification

Service specification consists on capturing the requirements of a service. From a business point of view,
the types of information (i.e. business requirements) that has to be gathered for specifying a service can
be divided into the following categories [Mitt06]:

• Accessibility How the service can be found and accessed? You can start thinking about what are
the processes that need to find and invoke the service you're building.

• Functionality What is the process or function this service provides? What business problem are
you trying to solve? The appropriate granularity of the service has to be determined with respect
to the degree of functionality added by the service to the SOA at hand.

• Interaction How does the service or application that calls this service interact with the service?
How does the service handle error conditions?

• Information What data is sent to this service and back from this service?

10 TIN2013-46638-C3-1-P /PGM-SDA

• Process How it works? What are the relationships between the actions and events of this service?

Once it is know the information needed for a service specification, let get into the process. In SOA,

the service specification process starts from the service providers (i.e. the stakeholders for whom you are
creating a service). They have to describe what the service has to accomplish. That is to say, service
providers describe service functionality using the information types described before and you document
the requirements following a methodology.

In order to document requirements [Gra08, MAD14] for a single service we can use use-cases
[Mitt06, Beh04, MAD14] activity diagrams and BPMN [Gra08]. The documentation process helps you
validate the requirements with the stakeholders to get an agreement, and it helps the technical team that
will implement the service. Figure 5 shows examples of use-case templates you can use to document
these requirements for SOA.

Fig. 5. Use case templates for service oriented requirements.

Diagramas de secuencia?? K Mittal 2006; T Behrens 2004

6 Methodology for service oriented requirement engineering

Defining software requirements is recognized as critical for a software project's success. An important
factor in software development failure is insufficient or erroneous requirements management [Gla02,
Ema08]. The computer-programming community defines requirements activity as engineering in itself.
Therefore, requirements engineering can be defined as the set of processes required for reaching an
agreement between developers, customers and users regarding the intended functionality of a planned
system; together with the acceptance criteria definition that allows stakeholders to decide whether the
complete system is valid or not.

D16.1 Methodology for service oriented requirements analysis 11

Fig. 6. Requirements Engineering and Service Oriented Requirements Engineering workflows.

The requirements stage consists of several activities that have to be carried out in a software

development project. These activities can be organized as a workflow (see Figure 6a). This workflow
unifies the main methodological approaches. It starts with a feasibility study that is constructed in a way
that determines the project scope and the available resources. After this, software developers execute an
elicitation cycle, and then analyze, specify and validate software requirements until ending up with a valid
software requirements specification. This document subsequently serves as the baseline for the software
development steps [IEEE98]. The previous workflow together with the processes associated to services
(i.e. identification, analysis and design, and specification) can be adapted to deal with service oriented
requirements defining a service oriented requirements engineering workflow (see Figure 6b).

Requirements are elicited from users through interviews and other techniques such as questionnaires
or brainstorming. This often proves a complex task because activities requiring human communication
usually imply problems in understanding; whereas the concept of requirements is to define without
ambiguity what the system is expected to do. Consequently, developers are usually tasked with analyzing
and refining requirements in order to obtain a valid baseline.

The requirements captured are gathered in a document or its electronic equivalent, known as Software
Requirements Specification (SRS) [IEEE98]. This tedious and prone to error task is performed within the
requirements specification stage, usually with the aid of a software tool for the management and
maintenance of a large set of requirements specifications.

Requirements validation is performed to check if the elicited and specified requirements present any
inconsistencies, whether the information is complete or not, and whether there are any ambiguities in the
system definition. This process (elicitation-analysis-specification-validation) is carried out over several
iterations until deciding if the requirements specification has been successfully completed.

References

[OAS06] OASIS SOA Reference Model TC, OASIS Reference Model for Service Oriented Architecture 1.0, Official
OASIS Standard (Normative PDF), Oct. 12, (2006) !""#$%%&'()*'+),)-'#./*'01%)'+-02%34*5%)'+-02*#&6

[OPE09] The Open Group SOA Working Group, Service Oriented Architecture : What Is SOA? January (2009) 4th
Ed., !""#$%%777*'#./10'8#*'01%)'+%)'80(.-9'':%)'+%)'+*!"2

[Abu08] Khalil A. Abuosba, Asim A. El-Sheikh, "Formalizing Service-Oriented Architectures", IT Professional,
vol.10, no. 4, July/August, (2008) 34-38, &',$45*445;%<=>?*@55A*B5

[Jia09] Aihua Jia; Wenfeng Li; Dingfang Chen; Xiaowei Zhang, "Research of SOA-Based dynamic enterprise
workflow integration platform," 1st IEEE Symposium on Web Society, SWS '09, 23-24 Aug, (2009) 184-
188, &',$45*445;%CDC*@55;*E@B4BAB

[Jus07] Nicolai M. Josuttis, SOA in Practice: The Art of Distributed System Design, O’Reilly, C.9+)"'#'FGH IJ
(2007) ISBN-10: 0-596-52955-4

[Mitr06] T. Mitra. Architecture in practice, Part 1: Realizing Service-Oriented Architecture, IBM developersWorks
(2006) !""#$%%777*,92*('2%&.3.F'#.07'0:)%7.9).03,(.)%F,90+0K%+0-+0#0+(4%,/&.L*!"2F

[Dik12] Lonneke Dikmans, Ronald van Luttikhuizen, SOA Made Simple: Discover the true meaning behind the
buzzword that is ‘Service Oriented Architecture’, Packt Publishing, Birmingham, UK (2012) ISBN-10:
1849684162

[Hig05] Rob High, Jr., Stephen Kinder, Steve Graham, IBM’s SOA Foundation: An Architectural Introduction and
Overview, Version 1.0, November (2005)

12 TIN2013-46638-C3-1-P /PGM-SDA

[Gra08] I Graham. Requirements modeling and specification for service oriented architecture, John Wiley & Sons
Ltd, Chichester, UK (2008)

[Mitt06] K. Mittal, Requirements process for SOA projects, Part 2: Business requirements for your first SOA
services, IBM developersWorks (2006) !""#)$%%777*,92*('2%&.3.F'#.07'0:)%F,90+0K%+0-)'+0.M@%

[Ars04] A. Arsanjani, Service-oriented modeling and architecture. How to identify, specify, and realize services for
your SOA, IBM developersWorks (2004) !""#$%%777*,92*('2%&.3.F'#.07'0:)%F,90+0K%7)-)'+-
&.),1/4%

[Gla02] RL Glass, Software Engineering: Facts and Fallacies. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2002)

[IEEE98] I IEEE,: IEEE Recommended Practice for Software Requirements Specifications. Tech. rep. (1998) URL
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=720574

[Ema08] K El Emam, A Koru, A replicated survey of it software project failures. Software, IEEE 25(5), 84-90
(2008)

[MAD14] Junta de Andalucía, MADEJA: Marco de Desarrollo de la Junta de Andalucía, Versión 1.5.0 (2014) URL
http://www.juntadeandalucia.es/servicios/madeja/

